Értékes fémek kinyerése a Li-ion akkumulátorok hulladékából
Absztrakt
A Li-ion akkumulátorok (LIB) elterjedése, a várható hulladéktömeg nagysága indokolja a feldolgozási módszerek vizsgálatát és fejlesztését. Ehhez ismerni kell a fontosabb akkumulátortípusok szerkezetét és értékes öszszetevőit. Áttekintve az alapvető piro- és hidrometallurgiai eljárások fő jellemzőit, érdemesnek láttunk laboratóriumi kísérleteket végezni a kloridos rendszerek alapján. A jelenleg preferált és perspektivikus LCO, illetve NMC811 katódanyagok mellett a hagyományos LFP-típusú hulladék akkumulátort sem zártuk ki a hidrometallurgiai kezelésre előkészített black mass mintákból. A sósavas kioldás hatékonynak bizonyult, valamint a kloridos közeg előnyösnek mutatkozott az anioncserés kromatográfiával kialakított fő elválasztási művelet során. Ezt kombinálva oxidatív precipitációs módszerrel is lehetett mind a Co, Ni és a Mn komponenseket is tiszta hidroxid/ oxid alakban külön kinyerni. Az elektrolitikus fémkinyerés a kloridos oldatból szintén ígéretes lehetőségnek mutatkozott a laboratóriumi kísérletek alapján.
Hivatkozások
T. Yamahira, H. Kato, M. Anzai. Nonaqueous Electrolyte Secondary Battery. Szabadalom száma: U.S. Patent No. 5,053,297, 1 October 1991.
D. Werner, T. Mütze, U. A. Peuker. Influence of cell opening methods on organic solvent removal during pretreatment in lithium-ion battery recycling, Waste Manag. Res., 10, pp. 316-337, 2021.
X. Huang. Separator technologies for lithium-ion batteries, Journal of Solid State Electrochemistry, %1. kötet15, pp. 649-62, 2011. https://doi.org/10.1007/s10008-010-1264-9
X. Zeng, J. Li, N. Singh. Recycling of Spent Lithium-Ion Battery: A Critical Review, Critical Rev. in Environ. Sci. and Techn., 44, p. 1129-1165, 2014. https://doi.org/10.1080/10643389.2013.763578
E. Gerold, T. Nigl, A. Jandric, M. Altendorfer, B. Rutrecht, S. Scherhaufer, H. Raupenstrauch, R. Pomberger, H. Antrekowitsch, F. Part. Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies, Waste Management, 138, pp. 125-139, 2022. https://doi.org/10.1016/j.wasman.2021.11.038
M. Grützke, X. Mönninghoff, F. Horsthemke, V. Kraft, M. Winter, S. Nowak. Extraction of lithium-ion battery electrolytes with liquid and supercrytical carbon dioxide and additional solvents, RSC Advances, 5, pp. 43209-43217, 2015. https://doi.org/10.1039/C5RA04451K
W. Honggang, B. Friedrich. Development of a highly efficient hydrometallurgical recycling process for automotive Li-ion batteries, Journal of Sustainable Metallurgy, 1, pp. 168-178, 2015. https://doi.org/10.1007/s40831-015-0016-6
Z. Takacova, T. Havlik, F. Kukurugya, D. Orac. Cobalt and lithium recovery from active mass of spent Li-ion batterie: Theoritical and experimental approach, Hydrometallurgy, 163, pp. 9-17, 2016. https://doi.org/10.1016/j.hydromet.2016.03.007
C. L, T. X. et al. Process for the recovery of cobalt oxalate from spent lithium-ion batteries, Hydrometallurgy, 108, pp. 80-86, 2011. https://doi.org/10.1016/j.hydromet.2011.02.010
M. P, P. B. D., M. T. R. Recovery of valuable metals from cathodic active material of spent lithium-ion batteries: Leaching and kinetic aspects, Waste Management, 45, pp. 306-313, 2015. https://doi.org/10.1016/j.wasman.2015.05.027
B. S. P, P. G. et al. Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study, Journal of Cleaner Production, 147, pp. 37-43, 2017. https://doi.org/10.1016/j.jclepro.2017.01.095
X. Zheng, W. Gao et al. Spent lithium-ion battery recycling - reductive ammonia leaching of metals from cathode scrap by sodium sulphite, Waste Management, 60, pp. 680-688, 2017. https://doi.org/10.1016/j.wasman.2016.12.007
P. Meshram, Abhilash, B. D. Pandey et al. Comparison of different reductants in leahing of spent lithium ion batteries, Journal of Metals, 68, 2016. https://doi.org/10.1007/s11837-016-2032-9
J. M, L. R, B. E. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminium oxide based lithium-ion batteries, Journal of Power Sources, 247, pp. 551-555, 2014. https://doi.org/10.1016/j.jpowsour.2013.08.128
statista.com, [Online]. Available: https://www.statista.com/statistics/675828/average-prices-sugar-worldwide/
alibaba.com, [Online]. Available: https://www.alibaba.com/showroom/glucose-price-per-ton.html
echemi.com, [Online]. Available: https://www.echemi.com/productsInformation/pid_Rock20578-hydrogenperoxide.html.
alibaba.com, [Online]. Available: https://www.alibaba.com/showroom/sodium-bisulfite-price.html.
L. G. Sillén, A. E. Martell, Stability Constants of Metal-ion Complexes, London: The Chemical Society, 1964. https://doi.org/10.1097/00010694-196507000-00026
T. Kékesi, M. Isshiki. Anion Exchange Behavior of Copper and Some Metallic Impurities in HCl Solutions, MATER. TRANS. JIM, 35(6), pp. 406-413, 1994. https://doi.org/10.2320/matertrans1989.35.406
M. Uchikoshi. Determination of the Distribution of CobaltChloro Complexes in Hydrochloric Acid Solutions at 298 K, Journal of Solution Chemistry, 47(1), pp. 2021-2038, 2018. https://doi.org/10.1007/s10953-018-0831-z
T. Kékesi, M. Isshiki. Anion Exchange for the Ultra-High Purification of Transition Metals, Erzmetall, 56(2), pp. 59-67, 2003.
Z. S. G, H. W. Z. et al . Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation., Trans. Nonferrous Met. Soc. Chine, 22, pp. 2274-2281, 2012. https://doi.org/10.1016/S1003-6326(11)61460-X
T. W. J, C. X. P. et al. Recovery of Ti and Li from spent lithium titanate cathodes by a hydrometallurgical process, Hydrometallurgy, 147, pp. 210-216, 2014. https://doi.org/10.1016/j.hydromet.2014.05.013
C. X. P, C. Y. B. et al. Hydrometallurgical recovery of metal values from sulfuric acid leaching liqour of spent lithium-ion batteries, Waste Management, 38, pp. 349-356, 2015. https://doi.org/10.1016/j.wasman.2014.12.023
S. M. A., K. A. Hydrometallurgical recovery of metals from spent lithium-ion batteries, Am. J. Mater. Eng. Technol., 1, pp. 8-12, 2013.
F. K. Crundwell, M. S. Moats G. Davenport, Extractive metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, 2011. https://doi.org/10.1016/B978-0-08-096809-4.10038-3
J. Lu, D. Dreisinger, T. Glück. Cobalt electro winning - A systematic investigation for high, Hydrometallurgy, Vol. 178 p. 19-29. 2018. https://doi.org/10.1016/j.hydromet.2018.04.002
K. G. Fisher. COBALT PROCESSING DEVELOPMENTS, The Southern African Institute of Mining and Metallurgy, 6th South African Base Metals Conference, pp. 237-258, 2011.
E. Commission. Eur-lex, [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020PC0798.
EU. EUR-Lex, [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32006L0066.
L. Brückner, J. Frank, T. Elwert. Industrial Recycling of Lithium-ion Batteries - A Critical Review of Metallurgical Process ÍRoutes, Journal of Metals, %1. kötet10, %1. szám1107, 2020. https://doi.org/10.3390/met10081107
H. Wang, M. Vest, B. Friedrich. Hydrometallurgical processing of Li-ion battery scrap from electric vehilces, in Aachen University, Proceedings of EMC, 2011.
E. H, K. G. R. et al. Preparation and kinetic modelling of B-Co(OH)2 nanoplates thermal decomposition obtained from spent Li-ion batteries, Adv. Powder Technol., 28, pp. 2779-2786, 2017. https://doi.org/10.1016/j.apt.2017.08.005
T. Or, S. W. Gourley et al. Recycling of mixed cathode lithium‐ion batteries for electric vehicles: Current status and future outlook, Carbon Energy, 2, 2019. https://doi.org/10.1002/cey2.29
I. Samarukha. Recycling strategies for end-of-life Liion batteries from heavy electric vehicles, 2020. [Online]. Available: http://kth.diva-portal.org/smash/get/diva2:1464977/FULLTEXT01.pdf.
T. Kékesi, A kémiai metallurgia alapjai, Miskolc: Miskolci Egyetem, 2018.
M. Uchikoshi, K. Shinoda. Determination of structures of cobalt(II)-chloro complexes in hydrochloric acid solutions by X-ray absorption spectroscopy at 298 K, Structural Chemistry, 30(3), 945-954, 2019. https://doi.org/10.1007/s11224-018-1245-7