An extract from J. W. Gibbs’ work “On the Equilibrium of Heterogeneous Substances” for the 150th anniversary of its publication
Abstract
The Hungarian translation of J. W. Gibbs' main work, published between 1875–1878, is unknown. Of course, I am not surprised by this, because I would not dare to undertake a precise translation of this 300-page article, even if I had the time. Simply because I do not understand everything in it even today, and that would lead to mistranslation. However, since this is still one of the basic works of metallurgy, materials science, physical chemistry and the natural sciences in general (which is referred to by more people than read), I consider it important to publish at least an excerpt of the Hungarian "translation", focusing on those details that I believe I understand, on the one hand, and on the other hand, which in my opinion are still important and relevant insights today.
References
J. W. Gibbs: On the equilibrium of heterogeneous substances. Trans of Connect Academy, III, pp. 108–248. (1875. május – 1876. október) https://doi.org/10.5479/sil.421748.39088007099781, és pp. 343–524. (1877. május – 1878. július).
The collected works of J. Willard Gibbs in two volumes. Volume I: Thermodynamics. Longmans, Green and Co, NY, 1928.
J. W. Gibbs: Abstract on the “equilibrium of heterogeneous substances”. Amer. J. Sci., Ser 3, Vol. XVI, (1878) 441–458. https://doi.org/10.2475/ajs.s3-16.96.441
Kaptay Gy.: 150 éve jelent meg J. W. Gibbs főműve a heterogén anyagok egyensúlyáról, amelynek alapja R. Clausius 160 éve megjelent mechanikai hőelmélete és az általa bevezetett entrópia fogalma). Bányászati és Kohászati Lapok, 157 (2024-IV) 1–12. https://ojs.mtak.hu/index.php/bkl/article/view/17916
G. Kaptay: The generalized phase rule, the extended definition of the degree of freedom, the component rule and the seven independent non-compositional state variables: to the 150th anniversary of the phase rule of Gibbs. Materials, 17 (2024) 6048. https://doi.org/10.3390/ma17246048
G. Kaptay: The chemical (not mechanical) paradigm of thermodynamics of colloid and interface science. Adv. Colloid Interface Sci., 256 (2018) 163–192. https://doi.org/10.1016/j.cis.2018.04.007
A. Vegh, J. Korozs, G. Kaptay: Extension of the Gibbs−Duhem Equation to the Partial Molar Surface Thermodynamic Properties of Solutions. Langmuir 38 (2022) 4906-4912. https://doi.org/10.1021/acs.langmuir.2c00229
J. A. V. Butler: The thermodynamics of the surfaces of solutions. Proc. R. Soc., A 135 (1932) 348–375. https://doi.org/10.1098/rspa.1932.0040
G. Kaptay: A coherent set of model equations for various surface and interface energies in systems with liquid and solid metals and alloys. Adv. Colloid Interface Sci., 283 (2020) 102212. https://doi.org/10.1016/j.cis.2020.102212
J. Korozs, G. Kaptay: Derivation of the Butler equation from the requirement of the minimum Gibbs energy of a solution phase, taking into account its surface area. Coll. Surf., A 533 (2017) 296–301. https://doi.org/10.1016/j.colsurfa.2017.09.010
G. Kaptay: Comparison of different model equations for size- and shape-dependent integral and partial molar Gibbs energies of nanophases to screen out the incorrect ones. Langmuir (2025) https://doi.org/10.1021/acs.langmuir.5c04663
J. Lee, K. J. Sim: General equations of CALPHADtype thermodynamic description for metallic nanoparticle systems. Calphad, 44 (2014) 129–132. https://doi.org/10.1016/j.calphad.2013.07.008

