Beetles in the forest: long-term effects of habitat change on the structure of ground beetle assemblages, from community level to individual behaviour
Abstract
In a long-term study (2014–2018), I assessed the effects of four forest management treatments [clear-cutting area, retention tree group, preparation cutting (elements of the cutting regime) and gap-cutting (intervention of the evergreen forest regime)] on the structure of the ground beetle assemblages (Coleoptera: Carabidae), based on taxon-based and functional diversity metrics, relative to untreated control stands. I also combined this research with tracking individual movement patterns to address the behavioural aspect of habitat use. I confirmed that the functional redundancy of the forest specialist gerbil community is a good characterization of the naturalness of forest stands, and that this group is also sensitive to changes in canopy closure. This approach can help to identify forest management strategies that can contribute to sustainable forest management.
References
BAUHUS J., PUETTMANN K., MESSIER C. 2009. Silviculture for old-growth attributes. Forest Ecology and Management, 258: 525–537. https://doi.org/10.1016/j.foreco.2009.01.053
BENGTSSON J., NILSSON S.G., FRANC A. & MENOZZI P 2000. Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecology and Management, 132: 39–50. https://doi.org/10.1016/S0378-1127(00)00378-9
CADOTTE M., ALBERT C.H. & WALKER S.C. 2013. The ecology of differences: Assessing community assembly with trait and evolutionary distances. Ecology Letters, 16: 1234–1244. https://doi.org/10.1111/ele.12161
CHRISTENSEN M. & EMBORG J. 1996. Biodiversity in natural versus managed forest in Denmark. Forest Ecology and Management, 85: 47–51. https://doi.org/10.1016/S0378-1127(96)03749-8
DESENDER K., ERVYNCK A. & TACK G. 1999. Beetles diversity and historical ecology of woodlands in the Flanders. Belgian Journal of Zoology, 129: 139–156.
DUFRÊNE M. & LEGENDRE P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67: 345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2
ELEK Z., DAUFFY-RICHARD E. & GOSSELIN F. 2010. Carabid species responses to hybrid poplar planta-tions in floodplains in France. Forest Ecology and Management, 260: 1446–1455. https://doi.org/10.1016/j.foreco.2010.07.034
ELEK Z., RŮŽIČKOVÁ J. & ÓDOR P. 2021. Individual decisions drive the changes in movement patterns of ground beetles between forestry management types. Biologia, 76: 3287–3296. https://doi.org/10.1007/s11756-021-00805-x
ELEK Z., RŮŽIČKOVÁ J. & ÓDOR P. 2022. Functional plasticity of carabids can presume better the chang-es in community composition than taxon-based descriptors. Ecological Applications, 32(1): 1–13. https://doi.org/10.1002/eap.2460
EUROPEAN COMMISSION 2021. New EU Forest Strategy for 2030. Communication from the Commis-sion to the European Parlament, the Council, the European Economic and Social Committee and the Committee of the Regions, New EU Forest Strategy for 2030: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021DC0572 (last access: 25/05/2022).
FYFE R.M., WOODBRIGDE J. & ROBERTS N. 2015. From Forest to Farmland: pollen-inferred land cover change across Europe using the pseudobiomization. Global Change Biology, 21: 1977–1212. https://doi.org/10.1111/gcb.12776
GRÜM L. 1971a. Remarks on the differentiation in Carabidae mobility. Ekologia Polska, 19: 47–56.
GRÜM L. 1971b. Spatial differentiation of the Carabus L. (Carabidae, Coleoptera) mobility. Ekologia Polska, 19: 1–34.
HEIKKALA O., SEIBOLD S., KOIVULA M., MARTIKAINEN P., MÜLLER J., THORN S. & KOUKI J. 2016. Re-tention forestry and prescribed burning result in functionally different saproxylic beetle assemblages than clear-cutting. Forest Ecology and Management, 359: 51–58.
https://doi.org/10.1016/j.foreco.2015.09.043
HERMY M. & VERHEYEN K. 2007. Legacies of the past in the present-day forest biodiversity: a review of past land-use effects on forest plant species composition and diversity. In: NAKASHIZUKA T. (ed.): Sustainability and Diversity of Forest Ecosystems. Tokyo: Springer, pp. 361–371. https://doi.org/10.1007/978-4-431-73238-9_1
KOIVULA M.J., VENN S., HAKOLA P. & NIEMELÄ J. 2019. Responses of boreal ground beetles (Coleo-ptera, Carabidae) to different logging regimes ten years post harvest. Forest Ecology and Manage-ment, 436: 27–38. https://doi.org/10.1016/j.foreco.2018.12.047
LANGROCK R., KING R., MATTHIOPOULOS J., THOMAS L., FORTIN D. & MORALES J.M. 2012. Flexible and practical modeling of animal telemetry data: Hidden Markov models and extensions. Ecology, 93: 2336–2342. https://doi.org/10.1890/11-2241.1
LINDENMAYER D.B., LIKENS G.E., ANDERSEN A., BOWMAN D., BULL C.M., BURNS E., DICKMAN C.R., HOFFMANN A.A., KEITH D.A., LIDDELL M.J., LOWE A.J., METCALFE D.J., PHINN S.R., RUSSELL-SMITH J., THURGATE N. & WARDLE G.M. 2012. Value of long-term ecological studies. Austral Ecology, 37: 745–757. https://doi.org/10.1111/j.1442-9993.2011.02351.x
LÖVEI G.L. & SUNDERLAND K.D. 1996. Ecology and behaviour of ground beetles (Coleoptera: Cara-bidae). Annual Review of Entomology, 41: 231–256. https://doi.org/10.1146/annurev.en.41.010196.001311
MAGURA T. 2017. Ignoring functional and phylogenetic features masks the edge influence on ground beetle diversity across forest-grassland gradient. Forest Ecology and Management, 384: 371–377. https://doi.org/10.1016/j.foreco.2016.10.056
MAGURA T. & LÖVEI G.L. 2019. Environmental filtering is the main assembly rule of ground beetles in the forest and its edge but not in the adjacent grassland. Insect Science, 26: 154–163. https://doi.org/10.1111/1744-7917.12504
MORI A.S. & KITAGAWA R. 2014. Retention forestry as a major paradigm for safeguarding forest biodi-versity in productive landscapes: A global meta-analysis. Biological Conservation, 175: 65–73. https://doi.org/10.1016/j.biocon.2014.04.016
MURRAY B.D., HOLLAND J.D., SUMMERVILLE K.S., DUNNING J.B., SAUNDERS M.R. & JENKINS M.A. 2017. Functional diversity response to hardwood forest management varies across taxa and spatial scales. Ecological Applications, 27: 1064–1081. https://doi.org/10.1002/eap.1532
NEGRO M., CASALE A., MIGLIORE L., PALESTRINI C. & ROLANDO A. 2008. Habitat use and movement patterns in the endangered ground beetle species, Carabus olympiae (Coleoptera: Carabidae). Euro-pean Journal of Entomology, 105: 105–112. https://doi.org/10.14411/eje.2008.015
NIEMELÄ J., KOIVULA M. & KOTZE D.J. 2007. The effects of forestry on carabid beetles (Coleoptera: Carabidae) in boreal forests. Journal of Insect Conservation, 11: 5–18.
https://doi.org/10.1007/s10841-006-9014-0
NOLTE D., SCHULDT A., GOSSNER M.M., ULRICH W. & ASSMANN T. 2017. Functional traits drive ground beetle community structures in Central European forests: Implications for conservation. Bio-logical Conservation, 213: 5–12. https://doi.org/10.1016/j.biocon.2017.06.038
OKUZAKI Y. 2021. Effects of body size divergence on male mating tactics in the ground beetle Carabus japonicus. Evolution, 75: 2269–2285. https://doi.org/10.1111/evo.14302
PAILLET Y., ARCHAUX F., DU PUY S., BOUGET C., BOULANGER V., DEBAIVE N., GILG O., GOSSELIN F. & GUILBERT E. 2018. The indicator side of tree microhabitats: A multi‐taxon approach based on bats, birds and saproxylic beetles. Journal of Applied Ecology, 55: 2147–2159. https://doi.org/10.1111/1365-2664.13181
POMMERENING A. & MURPHY S. T. 2004. A review of the history, definitions and methods of continu-ous cover forestry with special attention to afforestation and restocking. Forestry, 77: 27–44. https://doi.org/10.1093/forestry/77.1.27
RIECKEN U. & RATHS U. 1996. Use of radio telemetry for studying dispersal and habitat use of Carabus coriaceus L. Annales Zoologici Fennici, 33: 109–116.
RŮŽIČKOVÁ J. & ELEK Z. 2021a. Recording fine-scale movement of ground beetles by two methods: Potentials and methodological pitfalls. Ecology and Evolution, 11: 8562–8572. https://doi.org/10.1002/ece3.7670
RŮŽIČKOVÁ J. & ELEK Z. 2021b. Unequivocal Differences in Predation Pressure on Large Carabid Bee-tles between Forestry Treatments. Diversity, 13: 484. https://doi.org/10.3390/d13100484
RŮŽIČKOVÁ J., SÁNDOR B., SZLÁKVO A. & ELEK Z. 2021. Individual movement of large carabids as a link for activity density patterns in various forestry treatments. Acta Zoologica Academiae Scien-tiarum Hungaricae, 67(1): 77–86. https://doi.org/10.17109/AZH.67.1.77.2021
SAPIA M., LÖVEI G.L. & ELEK Z. 2006. Effects of varying sampling effort on the observed diversity of carabid (Coleoptera: Carabidae) assemblages in the Danglobe Project, Denmark. Entomologica Fennica, 17: 345–350. https://doi.org/10.33338/ef.84356
SCHIRMEL J., BLINDOW I. & BUCHHOLZ S. 2012. Life-history trait and functional diversity patterns of ground beetles and spiders along a coastal heathland successional gradient. Basic and Applied Ecol-ogy, 13: 606–614. https://doi.org/10.1016/j.baae.2012.08.015
THIELE H.U. 1977. Carabid Beetles in Their Environments. New York: Springer. https://doi.org/10.1007/978-3-642-81154-8
VANBERGEN A.J., WOODCOCK B.A., WATT A.D. & NIEMELÄ J. 2005. Effect of land-use heterogeneity on carabid communities at the landscape scale. Ecography, 28: 3–16.
https://doi.org/10.1111/j.0906-7590.2005.03991.x
WOOTTON J.T. 1998. Effects of disturbance on species diversity: a multitrophic perspective. The Ameri-can Naturalist, 152: 803–825. https://doi.org/10.1086/286210
YAMANAKA S., YAMAURA Y., SAYAMA K., SATO S. & OZAKI K. 2021. Effects of dispersed broadleaved and aggregated conifer tree retention on ground beetles in conifer plantations. Forest Ecology and Management, 489: 119073. https://doi.org/10.1016/j.foreco.2021.119073