A Chlamydomonas zöldalga nemzetség algáinak szerepe a biotechnológiában és helyük a zöldalgák rendszerében

  • Katona Szabina Nyugat-magyarországi Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Növénybiológiai Intézet, 9200 Mosonmagyaróvár, Lucsony u. 15-17.
  • Molnár Zoltán Nyugat-magyarországi Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Növénybiológiai Intézet, 9200 Mosonmagyaróvár, Lucsony u. 15-17.
  • Ördög Vince 1 Nyugat-magyarországi Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Növénybiológiai Intézet, 9200 Mosonmagyaróvár, Lucsony u. 15-17.; 2 University of KwaZulu-Natal, School of Biological Sciences, Pietermaritzburg Campus, 3209 Scottsville, Private Bag X 01, South African Republic
Kulcsszavak: Chlamydomonas, filogenetika, polifázikus megközelítés, taxonómia, zöldalgák

Absztrakt

Chlamydomonas az egyik legnagyobb zöldalga nemzetség több mint 800 leírt fajjal. Megközelítőleg 400 törzsük áll rendelkezésre törzsgyűjteményekben és alkalmazható kutatási célokra. A Chlamydomonas nemzetség sokoldalú gyakorlati jelentőségére utal, hogy modellszervezetként olyan tudományterületeken alkalmazzák, mint a fotoszintézis kutatás, a genetika, az UV-rezisztencia kérdései, a biogáz és biodízel termelés lehetőségei, a hormonkutatás, a mezőgazdaság és a gyógyszerkutatás. A Chlamydomonas taxonokat hagyományosan életciklusuk vegetatív szakaszában, morfológiai jellemzőik szerint osztályozzák. Az egysejtű szervezeteket magába foglaló nemzetség alapvető jellemzője a két egyenlő hosszúságú ostor és a sejt térfogatának mintegy felét kitevő kloroplasztisz, amely egy vagy több pirenoidot tartalmaz. Az 1990-es évek óta, a molekuláris markerek filogenetikai elemzésben való alkalmazása bebizonyította, hogy a morfológiai megközelítés nem kielégítő a legtöbb zöldalga, így a Chlamydomonas nemzetség esetében sem. Napjainkra kiderült, hogy a nemzetség polifiletikus, ezért alapos felülvizsgálatra van szükség, amelyre a legújabb irányvonal, a polifázikus megközelítés kínál lehetőséget. Utóbbi olyan különböző eljárásokat egyesít magában, mint a morfológiai, citológai, ultrastruktúrális és molekuláris biológiai elemzések. A hagyományos taxonómiát alkalmazó morfológusok több mint 800 Chlamydomonas fajt jegyeznek, de a polifázikus megközelítés alkalmazásával ez a szám minden bizonnyal a töredékére, 100-150 taxonra fog csökkenni.

Hivatkozások

Ács É., Kiss K. T. (szerk.) 2004: Algológiai praktikum. Eötvös Kiadó, Budapest, p. 361.

Barsanti L., Gualtieri P. 2006: Algae anatomy, biochemistry, and biotechnology. CRC Press, Boca Raton, FL, USA.

Barclay W. R., Lewin R. A. 1985: Microalgal polysaccharide production for the conditioning of agricultural soils. Plant and Soil 88(2): 159–169. http://dx.doi.org/10.1007/BF02182443

Becker B. 2013: Snow ball earth and the split of Streptophyta and Chlorophyta. Trends in Plant Science 18(4): 180–183. http://dx.doi.org/10.1016/j.tplants.2012.09.010

Bellinger E. G., Sigee D. C. 2010: Freshwater Algae, Identification and Use as Bioindicators. John Wiley & Sons, West Sussex, UK.

Bertalan I., Esposito D., Torzillo G., Faraloni C., Johanningmeier U., Giardi M. T. 2007: Photosystem II stress tolerance in the unicellular green alga Chlamydomonas reinhardtii under space conditions. Microgravity Science and Technology 19(5): 122–127. http://dx.doi.org/10.1007/BF02919466

Bidigare R. R., Ondrusek M. E., Kennicutt M. C., Iturriaga R. H., Harvey R., Hoham H. W., Macko S. A. 1993: Evidence for a photoprotective function for secondary carotenoids of snow algae. Journal of Phycology 29(4): 427–434. http://dx.doi.org/10.1111/j.1529-8817

Black J. G. 2008: Microbiology: principles and explorations. Wiley.

Bloodgood R. A. 1990: Gliding motility and flagellar glycoprotein dynamics in Chlamydomonas. In: Bloodgood R. A. (ed.) Ciliary and flagellar membranes. Plenum Press, New York and London, pp. 91–128.

Brook A. J., Johnson L. R. 2002: Order Zygnemales. In: John D. M., Whitton B. A., Brook A. J. (eds.) The freshwater algal flora of the British Isles. An identification guide to freshwater and terrestrial algae. Cambridge University Press, Cambridge, pp. 479–593.

Buchheim M. A., Turmel M., Zimmer, E. A., Chapman R. L. 1990: Phylogeny of Chlamydomonas (Chlorophyta) based on cladistic analysis of 18s rRNA sequence data. Journal of Phycology 26(4): 689–699. http://dx.doi.org/10.1111/j.0022-3646.1990.00689.x

Cagnon C., Mirabella B., Nguyen H. M., Beyly-Adriano A., Bouvet B., Cuiné S., Beisson F., Peltier G., Li-Beisson Y. 2013: Development of a forward genetic screen to isolate oil mutants in the green microalga Chlamydomonas reinhardtii. Biotechnology for Biofuels 6: 178. http://dx.doi.org/10.1186/1754-6834-6-178

Chisti Y. 2007: Biodiesel from microalgae. Biotechnology Advances 25(3): 294–306. http://dx.doi.org/10.1016/j.biotechadv.2007.02.001

Deng X., Cai J., Li Y., Fei X. 2014: Expression and knockdown of the PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii. Biotechnology Letters 36(11): 2199–2208. http://dx.doi.org/10.1007/s10529-014-1593-3

Dent R., Han M., Niyogi K. K. 2001: Functional genomics of plant photosynthesis in the fast lane using Chlamydomonas reinhardtii. Trends in Plant Science 6(8): 364–371. http://dx.doi.org/10.1016/S1360-1385(01)02018-0

Dill O. 1895: Die Gattung Chlamydomonas und ihre nachsten Verwandten. Jahrbücher für wissenschaftliche Botanik 28: 323–358. pl.5.

Dolhi J. M., Maxwell D. P., Morgan-Kiss R.M. 2013: Review: the Antarctic Chlamydomonas raudensis: an emerging model for cold adaptation of photosynthesis. Extremophiles 17(5): 711–722. http://dx.doi.org/10.1007/s00792-013-0571-3

Dubini A. 2011: Green Energy: Biofuel production from Chlamydomonas reinhardtii. The Biochemical Society 33(2): 20–23.

Duval B., Shetty K., Thomas W. H. 2000: Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. Journal of Applied Phycology 11(6): 559–566. http://dx.doi.org/10.1023/A:1008178208949

Ehrenberg C. G. 1833: Dritter Beitrag zur Erkenntnis großer Organisation in der Richtung des kleinsten Raumes. Abh. Königl. Akad. Wiss. Berlin: 145–336.

Ehrenberg C. G. 1838: Die Infusionsthierchen als vollkommene Organismen. L. Voss, Leipzig.

Ettl H. 1976: Die Gattung Chlamydomonas Ehrenberg (Chlamydomonas und die nächstverwandten Gattungen II). Beih Nova Hedwigia 60: 1–1122.

Evans R. D., Johansen J. R. 1999: Microbiotic crusts and ecosystem processes. Critical Reviews in Plant Sciences 18(2): 183–225. http://dx.doi.org/10.1080/07352689991309199

Falchini L., Sparvoli E., Tomaselli L. 1996: Effect of Nostoc (Cyanobacteria) inoculation on the structure and stability of clay soils. Biology and Fertility of Soils 23(3): 346–352. http://dx.doi.org/10.1007/BF00335965

Fan J., Andre C., Xu C. 2011: A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Letters 585(12): 1985–1991. http://dx.doi.org/10.1016/j.febslet.2011.05.018

Fawley M. W., Fawley K. P., Buchheim M. A. 2004: Molecular diversity among communities of freshwater microchlorophytes. Microbial Ecology 48(4): 489–499. http://dx.doi.org/10.1007/s00248-004-0214-4

Francois D. L., Robinson G. G. C. 1988: Indices of triazine toxicity in Chlamydomonas geitleri Ettl. Aquatic Toxicology 16(3): 205–227. http://dx.doi.org/10.1016/0166-445X(90)90038-Q

Frey W. (ed.) 2015: Syllabus of Plant Families – A. Engler's Syllabus der Pflanzenfamilien Part 2/1: Photoautotrophic eukaryotic Algae Glaucocystophyta, Cryptophyta, Dinophyta/Dinozoa, Haptophyta, Heterokontophyta/Ochrophyta, Chlorarachniophyta/Cercozoa, Euglenophyta/Euglenozoa, Chlorophyta, Streptophyta p.p. J. Cramer in der Gebr. Borntraeger Verlagsbuchhandlung, Stuttgart, Germany. 324 pp.

Friedl T. 1997: The evolution of the green algae. Plant Systematics and Evolution 11(suppl.): 87–101. http://dx.doi.org/10.1007/978-3-7091-6542-3_4

Funes S., Lars-Gunnar F., González-Halphen D. 2007: Chlamydomonas reinhardtii: The Model of Choice to Study Mitochondria From Unicellular Photosynthetic Organisms. Methods in Molecular Biology 372: 137–149. http://dx.doi.org/10.1007/978-1-59745-365-3_10

Gerloff J. 1940: Beiträge zur Kenntnis der Variabilität und Systematik der Gattung Chlamydomonas. Archiv für Protistenkunde 94: 311–502.

Gfeller R. P., Gibbs M. 1984: Fermentative metabolism of Chlamydomonas reinhardtii. Plant Physiology 75(1): 212–218. http://dx.doi.org/10.1104/pp.75.1.212

Ghirardi M. L., Dubini A., Yu J., Maness P. C. 2009: Photobiological hydrogen-producing systems. Chemical Society Reviews 38: 52–61. http://dx.doi.org/10.1039/B718939G

Ghirardi M. L., King P. W., Posewitz M.C., Maness P.C., Fedorov A., Kim K., Cohen J., Schulten K., Seibert M. 2005: Approaches to developing biological H2-photoproducing organisms and processes. Biochemical Society Transactions 33(1): 70–72. http://dx.doi.org/10.1042/BST0330070

Gowans C. S. 1976: Genetics of Chlamydomonas moewusii and Chlamydomonas eugametos. In: Lewin, R. A. (ed.) The Genetics of Algae. Blackwell Scientific, Oxford, pp. 145-173.

Greenbaum E. 1982: Photosynthetic hydrogen and oxygen production: kinetic studies. Science 215: 291–293. http://dx.doi.org/10.1126/science.215.4530.291

Greenbaum E. 1988: Energetic efficiency of hydrogen photoevolution by algal water splitting. Biophysical Journal 54(2): 365–368. http://dx.doi.org/10.1016%2FS0006-3495(88)82968-0

Hajósné Dr. Novák M. 1999: Genetikai variabilitás a növénynemesítésben. Mezőgazda Kiadó, Budapest.

Harris E. H. 1989: The Chlamydomonas sourcebook. Academic Press, San Diego, California.

Harris E. H. 2009: The Chlamydomonas sourcebook (second edition). Introduction to Chlamydomonas and its laboratory use, vol 1. Academic Press, San Diego.

Hu C. X., Zhang D. L., Liu Y. D. 2004: Research progress on algae of the microbial crusts in arid and semiarid regions. Progress in Natural Science 14(4): 289–295. http://dx.doi.org/10.1080/10020070412331343501

Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., Seibert M., Dazrins A. 2008: Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal 54(4): 621–639. http://dx.doi.org/10.1111/j.1365-313X.2008.03492.x

Jäger K., Bartók T., Ördög V., Barnabás B. 2010: Improvement of maize (Zea mays L.) anther culture responses by algae-derived natural substances. South African Journal of Botany 76(3): 511–516. http://dx.doi.org/10.1016/j.sajb.2010.03.009

Kim C. W., Moon M., Park W., Yoo G., Choi Y., Yang J. 2014: Energy-efficient cultivation of Chlamydomonas reinhardtii for lipid accumulation under flashing illumination conditions. Biotechnology and Bioprocess Engineering 19(1): 150–158. http://dx.doi.org/10.1007/s12257-013-0468-0

Kirk D. L. 2005: A twelve-step program for evolving multicellularity and a division of labor. Bioessays 27(3): 299–310. http://dx.doi.org/10.1002/bies.20197

Kol E., Flint E. A. 1968: Algae in green ice from the Balleny Islands, Antarctica. New Zealand Journal of Botany 6(3): 249–261. http://dx.doi.org/10.1080/0028825X.1968.10428810

Leliaert F., Smith D. R., Moreau H., Herron M. D., Verbruggen H., Delwiche C. F., De Clerck O. 2012: Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences 31(1): 1–46. http://dx.doi.org/10.1080/07352689.2011.615705

Lemieux B., Turmel M., Lemieux C. 1985: Chloroplast DNA variation in Chlamydomonas and its potential application to the systematics of this genus. BioSystems 18(3-4), 293–298. http://dx.doi.org/10.1016/0303-2647(85)90029-2

León R., Galván F. 1997: Analysis of effective light in different photobioreactors: its infuence on growth, photosynthetic activity and glycerol production by the freshwater green alga Chlamydomonas reinhardtii. World Journal of Microbiology and Biotechnology 13(2): 237–239. http://dx.doi.org/10.1023/A:1018506317991

Lewis A. L., Mccourt R. M. 2004: Green algae and the origin of land palnts. American Journal of Botany 91(10): 1535–1556. http://dx.doi.org/10.3732/ajb.91.10.1535

Manuel A., Beligni M., Elder J., Siefker D., Tran M., Webber A., McDonald T., Mayfield S. 2007: Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnology Journal 5(3): 402–412. http://dx.doi.org/10.1111/j.1467-7652.2007.00249.x

Matsuo Y., Imagawa H., Nishizawa M., Shizuri Y. 2005: Isolation of an algal morphogenesis inducer from a marine bacterium. Science 307: 1598. http://dx.doi.org/10.1126/science.1105486

Mayfield S., Franklin S. 2005: Expression of human antibodies in eukaryotic micro-algae. Vaccine 23(15): 1828–1832. http://dx.doi.org/10.1016/j.vaccine.2004.11.013

McCourt R. M. 1995: Green algal phylogeny. Trends in Ecology and Evolution 10(4):159–163. http://dx.doi.org/10.1016/S0169-5347(00)89027-8

Melis A., Zhang L., Forestier M., Hirardi M. L., Seibert M. 2000: Sustained Photobiological Hydrogen Gas Production upon Reversible Inactivation of Oxygen Evolution in the Green Alga Chlamydomonas reinhardtii. Plant Physiology 122(1): 127–136. http://dx.doi.org/10.1104/pp.122.1.127

Merchant S. S., Prochnik S. E., Vallon O., Harris E. H., Karpowicz S. J., Witman G. B. et al. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245–250. http://dx.doi.org/10.1126/science.1143609

Metting B. 1987: Dynamics of wet and dry aggregate stability from a three-year microalgal soil conditioning experiment in the field. Soil Science 143(2): 139–143. http://dx.doi.org/10.1097/00010694-198702000-00009

Metting B. 1988: Micro-algae in agriculture. In: Borowitzka M. A., Borowitzka L. J. (eds.) Microalgal biotechnology. Cambridge University Press, Cambridge, pp. 288–304.

Metting B., Rayburn W. R. 1983: The influence of a microalgal conditioner on selected Washington soils: an empirical study. Soil Science Society of America Journal 47(4): 682–685. http://dx.doi.org/10.2136/sssaj1983.03615995004700040015x

Misurcova L., Skrovankova S., Samek D., Ambrozova J., Machu L. 2012: Health Benefits of Algal Polysaccharides in Human Nutrition. Advances in Food and Nutrition Research 66: 75–145. http://dx.doi.org/10.1016/b978-0-12-394597-6.00003-3

Mussgnug J. H., Klassen V., Schlüter A., Kruse O. 2010: Microalgae as a substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology 150(1): 51–56. http://dx.doi.org/10.1016/j.jbiotec.2010.07.030

Necas J., Tetik K., Sulek J. 1986: Mutation process induced by MNNG in different phases of the cell cycle in Chlamydomonas geitleri VI. Dependence of the induction of mutagenesis on the mutagen dose in the course of the cell cycle. Archiv für Hydrobiologie Supplement 44: 393–404.

Norton T. A., Melkonian M., Andersen R. A. 1996: Algal biodiversity. Phycologia 35(4): 308–326. http://dx.doi.org/10.2216/i0031-8884-35-4-308.1

Ördög V., Pocsai K., Gergely I., Bálint P., Németh L., Molnár Z. 2006: Microalgae in plant production and protection. 3rd Symposium on Microalgae and Seaweed Products in Agriculture, Mosonmagyaróvár (Hungary), 21-23 June, p.1.

Painter T. 1993: Carbohydrate polymers in desert reclamation: the potential of microalgal biofertilizers. Carbohydrate Polymers 20(2): 77–86. http://dx.doi.org/10.1016/0144-8617(93)90081-E

Pascher A. 1927: Eine Chrysomonade mit gestielten und verweigten Kolonien. Archiv für Protistenkunde 57: 319–330.

Patricio A. L. 2013: Isolation, characterization and identification of microalgae from the Red Sea. Thesis. King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.

Pedersen L. B., Rosenbaum J. L. 2008: Intraflagellar transport (IFT): role in ciliary assembly, resorption and signalling. Current Topics in Developmental Biology 85: 23–61. http://dx.doi.org/10.1016/S0070-2153(08)00802-8

Prakash J. W., Marimuthu J., Jeeva S. 2011: Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pacific Journal of Tropical Biomedicine: 1(2): S170–S173. http://dx.doi.org/10.1016/S2221-1691(11)60149-4

Prakash O., Verma M., Sharma P., Kumar M., Kumari K., Singh A., Kumari H., Jit S., Gupta S. K., Khanna M., Lal R. 2007: Polyphasic approach of bacterial classification – An overview of recent advances. Indian Journal of Microbiology 47(2): 98–108. http://dx.doi.org/10.1007/s12088-007-0022-x

Prochnik S. E., Umen J., Nedelcu A. M., Hallmann A., Miller S. M., Nishii I. et al. 2010: Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329: 223–226. http://dx.doi.org/10.1126/science.1188800

Pröschold T., Marina B., Schlösserb U. G., Melkoniana M. 2001: Molecular Phylogeny and Taxonomic Revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and Description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist 152(4): 265–300. http://dx.doi.org/10.1078/1434-4610-00068

Pröschold, T., Silva, P. C. 2007: Proposal to change the listed type of Chlamydomonas Ehrenb., nom. cons. (Chlorophyta). Taxon 56(2): 595–596.

Pröschold T., Leliaert F. 2007: Systematics of the green algae: conflict of classic and modern approaches. In: Brodie J., Lewis J., (eds.) Unravelling the algae: The past, present, and future of algal systematics, CRC Press, Boca Raton, FL, pp. 123–153. http://dx.doi.org/10.1201/9780849379901.ch7

Pulz O., Gross W. 2004: Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology 65(6): 635–648. http://dx.doi.org/10.1007/s00253-004-1647-x

Remias D., Lutz U., Lutz C. 2010: Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. European Journal of Phycology 40(3): 259–268. http://dx.doi.org/10.1080/09670260500202148

Richmond A. 2008: Handbook of microalgal culture: biotechnology and applied phycology. Wiley-Blackwell.

Rodolfi L., Zittelli C. G., Bassi N., Padovani G., Biondi N., Bonini G., Tredici M. R. 2009: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering 102(1): 100–112. http://dx.doi.org/10.1002/bit.22033

Sharma O. P 1986.: Textbook of Algae. Tata McGraw-Hill, New Delhi.

Skaloud P. 2008: Polyphasic approaches in the taxonomy of green aerophytic algae. Ph.D. thesis. Charles University in Prague, Faculty of Science, Department of Botany.

Slaninová M., Nagyová B., Gálová E., Hendrychová J., Bišová K., Zachleder V., Vlček D. 2003: The alga Chlamydomonas reinhardtii UVS11 gene is responsible for cell division delay and temporal decrease in histone H1 kinase activity caused by UV irradiation. DNA Repair 2(6): 737–750. http://dx.doi.org/10.1016/s1568-7864(03)00047-8

Solís R. A. R., Echeverría S. P., Valencia V. A. H. 2011: La microalga verde Chlamydomonas reinhardtii: nueva alternativa para la producción de proteínas recombinantes de interés médico. Revista Ciencia, Octubre-Deciembre 2011, pp. 2–9.

Spolaore P., Joannis-Cassan C., Duran E., Isambert A. 2006.: Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101(2): 87–96. http://dx.doi.org/10.1263/jbb.101.87

Stern D. B., Witman G., Harris E. H. (eds.) 2009. The Chlamydomonas sourcebook. Second Edition. Academic Press, Oxford.

Stirk W. A., Ördög V., Novák O., Rolcik J., Strnad M., Bálint P., van Staden J. 2013a: Auxin and cytokinin relationships in 24 microalgal strains. Journal of Phycology 49(3): 459–467. http://dx.doi.org/10.1111/jpy.12061

Stirk W. A., Bálint P., Tarkowská D., Novák O., Strnad M., Ördög V., van Staden J. 2013b: Hormone profiles in microalgae: gibberellins and brassinosteroids. Plant Physiology and Biochemistry 70: 348–353. http://dx.doi.org/10.1016/j.plaphy.2013.05.037

Takeda T., Miyao K., Tamoi M., Kanaboshi H., Miyasaka H., Shigeoka S. 2003: Molecular characterization of glutathione peroxidase-like protein in halotolerant Chlamydomonas sp. W80. Physiologia Plantarum 117(4): 467–475. http://dx.doi.org/10.1034/j.1399-3054.2003.00075.x

Tamoi M., Nagaoka M., Shigeoka S. 2005: Immunological properties of sedoheptulose-1,7-bisphosphatase from Chlamydomonas sp. W80. Bioscience, Biotechnology and Biochemistry 69(4): 848–851. http://dx.doi.org/10.1271/bbb.69.848

Tanaka S., Ikeda K., Miyasaka H. 2004: Isolation of a new member of group 3 late embryogenesis abundant protein gene from a halotolerant green alga by a functional expression screening with cyanobacterial cells. FEMS Microbiology Letters 236: 41–45. http://dx.doi.org/10.1016/s0378-1097(04)00357-x

Tetali S. D., Mitra M., Melis A. 2007: Development of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene. Planta 225(4): 813–829. http://dx.doi.org/10.1007/s00425-006-0392-z

Tran M., Zhon B., Petterson P., González M., Mayfield S. 2009: Synthesis and assembly of a full-lenght human monoclonal antibody in algal chloroplasts. Biotechnology and Bioengineering 104(4): 663–673. http://dx.doi.org/10.1002/bit.22446

Ugwu C. U., Aoyagi H., Uchiyama H. 2008: Photobioreactors for mass cultivation of algae. Bioresource Technology 99(10): 4021–4028. http://dx.doi.org/10.1016/j.biortech.2007.01.046

Umen J. G. 2011: Evolution of sex and mating loci: an expanded view from Volvocine algae. Current Opinion in Microbiology 14(6): 634–641. http://dx.doi.org/10.1016/j.mib.2011.10.005

VanWinkle-Swift K., Baron K., McNamara A., Minke P., Burrascano C., Maddock J. 1998: The Chlamydomonas zygospore: mutant strains of Chlamydomonas monoica blocked in zygospore morphogenesis comprise 46 complementation groups. Genetics 148(1): 131–137.

Visviki I., Palladino J. 2001: Growth and Cytology of Chlamydomonas acidophila Under Acidic Stress. Bulletin of Environmental Contamination and Toxicology 66(5): 623–630. http://dx.doi.org/10.1007/s001280054

Visviki I., Santikul D. 2000: The pH Tolerance of Chlamydomonas applanata (Volvocales, Chlorophyta). Archives of Environmental Contamination and Toxicology 38(2): 147–151. http://dx.doi.org/10.1007/s002449910018

Vuuren S. J., Taylor J., van Ginkel C., Gerber A. 2006: Easy identification of the most common freshwater algae. North-West University. Potchefstroom.

Wirth R. 2014: Biogáz termelő mikroorganizmus közösségek vizsgálata metagenomikai megközelítéssel. Doktori értekezés. SZTE és MTA-SZBK.

Zenova G. M., Shtina E. A., Dedysh S. N., Glagoleva O. B., Likhacheva A. A., Gracheva T. A. 1995: Ecological relations of algae in biocenoses. Mikrobiologiya 64: 121–133.

Zhang P., Liu S., Cong B., Wu G., Liu C., Lin X., Shen J., Huang X. 2011: A novel omega-3 fatty acid desaturase involved in acclimation processes of polar condition from Antarctic ice algae Chlamydomonas sp. ICE-L. Marine Biotechnology 13(3): 393–401. http://dx.doi.org/10.1007/s10126-010-9309-8

Zimmerman W. J. 1992: Microalgal biotechnology and applications in agriculture. In: Metting F. B. (ed.) Soil microbial ecology. Marcel Dekker, New York, pp. 457–479.
Megjelent
2016-06-05
Hogyan kell idézni
KatonaS., MolnárZ., & ÖrdögV. (2016). A Chlamydomonas zöldalga nemzetség algáinak szerepe a biotechnológiában és helyük a zöldalgák rendszerében. Botanikai Közlemények, 103(1), 153-171. https://doi.org/10.17716/BotKozlem.2016.103.1.153
Rovat
Szemle