Effects of household synthetic detergents and environmentally friendly laundry soap on germination, growth and physiological properties of wheat
Abstract
The increasing and widespread use of cleaning substances is a major source of environmental pollution. The pursuit of environmentally responsible behaviour is getting increasingly important in households as well. One way to do this is to use environmentally friendly detergents. In this study, we compared the ecotoxicity of commercially available synthetic laundry detergents and a washing solution made from laundry soap on wheat (Triticum aestivum L.). Three not environmentally friendly (A, B and C) and one eco-friendly synthetic liquid laundry detergents were included in the tests and compared with the effect of a washing solution made from traditional laundry soap. The effects of detergents on wheat germination, seedling weight, shoot and root growth, leaf carotenoid and chlorophyll content, photosynthesis, and peroxidase enzyme activity were investigated in the manufacturer’s recommended and higher concentrations. The laundry soap solution did not reduce germination even in the highest concentration (400 ml l–1), while synthetic detergents inhibited it even in 100 ml l–1 solution, and completely prevented it in a concentration of 400 ml l–1. The changes in the weight of seedlings due to the treatments showed a similar pattern of toxicity for the different detergents. The weight of individual seedlings decreased even at a low detergent concentration recommended by the manufacturers (2.5–5 ml l–1), except for the environmentally friendly detergent and the laundry soap solution. For the not environmentally friendly synthetic detergents, the concentration of 2.5 ml l–1 reduced the length of shoots by 33–53% and that of roots by 84–92%, while for the eco-friendly detergent, an intense inhibitory effect appeared from 100 ml l–1. The laundry soap solution did not have such effect; even in a solution of 100–400 ml l–1 concentration, the length of the shoots was reduced by only 34–38% and the length of the roots by 81–87%. For every detergent, growth inhibition was stronger in the roots than in the shoots. The concentration of photosynthetic pigments (chl-a, chl-b, carotenoids) decreased under the influence of synthetic detergents A, B and C even at low concentrations (2.5 ml l–1), in the 5 ml l–1 treatment of detergent B there were no surviving plants suitable for measurement. For the eco-friendly synthetic detergent, photosynthetic pigment contents declined only at 100 ml l–1 concentration. The maximum quantum yield (Fv/Fm) of photosystem II proved to be a weak indicator in this study as it responded moderately to treatments. Increasing oxidative stress indicated by the increase in peroxidase activity was obvious for the not environmentally friendly synthetic detergents with increasing low detergent concentrations. For the eco-friendly detergent, peroxidase activity did not change, while for the solutions made from laundry soap, it gradually doubled as high (100–400 ml l–1) concentration was reached. Based on our results, seed germination, root growth, pigment content and peroxidase activity are the most appropriate plant traits for the detection of stress caused by detergents.
When used in the recommended dosage concentration, the laundry soap solution and the eco-friendly synthetic laundry detergent did not have significant inhibitory effects on wheat germination, growth and physiological properties while inhibition occurred with the not environmentally friendly synthetic detergents. Our study shows that the laundry soap solution and the tested eco-friendly detergent – even though the latter also contains synthetic surfactants – may pose a low environmental risk if they get into greywater.
References
Ansari A. A., Khan F. A. 2014: Household detergents causing eutrophication in freshwater ecosystems. In: Ansari A. A., Gill S. S. (eds) Eutrophication: causes, consequences and control. Springer, Dordrecht. Vol. 2, pp. 139–163. https://doi.org/10.1007/978-94-007-7814-6_12
Azizullah A., Richter P., Jamil M., Häder D.-P. 2012: Chronic toxicity of a laundry detergent to the freshwater flagellate Euglena gracilis. Ecotoxicology 21(7): 1957–1964. https://doi.org/10.1007/s10646-012-0930-3
Birch R. R., Gledhill W. E., Larson R. J., Nielsen A. M. 1992: Role of anaerobic biodegradability in the environmental acceptability of detergent materials. Proceedings of the Third CESIO, London, International Surfactants Congress and Exhibition, Vol. 26, pp. 26–33.
Cai X., Ostroumov S. A. 2020: Discovery of detergent toxicity using non-animal bioassay. In: Ermakov V. V., Kapitalchuk M. V., Kapitalchuk I. P., Perelomov L. V., Sheptitskiy V. A., Melnicenco E. D. (eds) Biogeochemical innovations under the conditions of the biosphere technogenesis corrections. Shevchenko State University, Tiraspol, Vol. 2, pp. 215–219.
Chance B., Maehly A. C. 1955: Assay of catalases and peroxidases. Methods in Enzymology 2: 764–775. https://doi.org/10.1016/S0076-6879(55)02300-8
Chawla G., Misra V., Viswanathan P. N., Devi S. 1989: Toxicity of linear alkyl benzene sulphonate on some aquatic plants. Water, Air, and Soil Pollution 43: 41–51. https://doi.org/10.1007/BF00175581
Chirani M. R., Kowsari E., Teymourian T., Ramakrishna S. 2021: Environmental impact of increased soap consumption during COVID-19 pandemic: Biodegradable soap production and sustainable packaging. Science of The Total Environment 796: 149013. https://doi.org/10.1016/j.scitotenv.2021.149013
da Silva L. M. 2023: Impactos dos detergentes no meio ambiente: evidências de um estudo ecotoxicológico. Revista Ibero-Americana de Humanidades, Ciências e Educação 9(2): 1429–1441. https://doi.org/10.51891/rease.v9i2.8883
Fekete Sz. 2008: Új nemesítésű balkonnövények klímatűrése és peroxidáz aktivitása. Doktori (PhD) értekezés, Budapesti Corvinus Egyetem, Budapest, 141 pp.
Gadallah M. A. A. 1996: Phytotoxic effects of industrial and sewage waste waters on growth, chlorophyll content, transpiration rate and relative water content of potted sunfl ower plants. Water, Air, and Soil Pollution 89(1–2): 33–47. https://doi.org/10.1007/BF00300420
Jovanić B. R., Bojović S., Panić B., Radenković B., Despotović M. 2010: The effect of detergent as polluting agent on the photosynthetic activity and chlorophyll content in bean leaves. Health 2(5): 395–399. https://doi.org/10.4236/health.2010.25059
Kováts N., Hubai K., Diósi D., Sainnokhoi T.-A., Hoffer A., Tóth Á., Teke G. 2021: Sensitivity of typical European roadside plants to atmospheric particulate matter. Ecological Indicators 124: 107428. https://doi.org/10.1016/j.ecolind.2021.107428
Láng F. (szerk.) 1997: Növényélettan. A növényi anyagcsere 1. ELTE Eötvös Kiadó, Budapest, 998 pp.
Madsen T., Buchardt Boyd H., Nylén D., Rathmann Pedersen A., Petersen G. I., Simonsen F. 2001: Environmental and health assessment of substances in household detergents and cosmetic detergent products. Environmental Project No. 615, CETOX, Hørsholm, 201 pp. + 35 pp. Appendix
McEvoy J., Giger W. 1985: Accumulation of linear alkylbenzenesulphonate surfactants in sewage sludges. Naturwissenschaften 72(8): 429–431. https://doi.org/10.1007/BF00404885
Minareci O., Öztürk M., Egemen Ö., Minareci E. 2009: Detergent and phosphate pollution in Gediz River, Turkey. African Journal of Biotechnology 8(15): 3568–3575.
Mishra V., Srivastava G., Prasad S. M. 2009: Antioxidant response of bitter gourd (Momordica charantia L.) seedlings to interactive effect of dimethoate and UV-B irradiation. Scientia Horticulturae 120(3): 373–378. https://doi.org/10.1016/j.scienta.2008.11.024
Murchie E. H., Lawson T. 2013: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany 64(13): 3983–3998. https://doi.org/10.1093/jxb/ert208
Pandey P., Gopal B. 2010: Effect of detergents on the growth of two aquatic plants: Azolla pinnata and Hydrilla verticillata. Environment & We – An International Journal of Science & Technology 5: 107–114.
Perales J. A., Manzano M. A., Sales D., Quiroga J. A. 1999: Biodegradation kinetics of LAS in river water. International Biodeterioration & Biodegradation 43(4): 155–160. https://doi.org/10.1016/S0964-8305(99)00044-X
Salvatori E., Rauseo J., Patrolecco L., Barra Caracciolo A., Spataro F., Fusaro L., Manes F. 2021: Germination, root elongation, and photosynthetic performance of plants exposed to sodium lauryl ether sulfate (SLES): an emerging contaminant. Environmental Science and Pollution Research 28: 27900–27913. https://doi.org/10.1007/s11356-021-12574-w
Sawadogo B., Sou M., Hijikata N., Sangare D., Maiga A. H., Funamizu N. 2014: Effect of detergents from greywater on irrigated plants: case of okra (Abelmoschus esculentus) and lettuce (Lactuca sativa). Journal of Arid Land Studies 24(1): 117–120.
Schöberl P., Bock K. J., Huber L. 1988: Ökologisch relevante Daten von Tensiden in Wasch- und Reinigungsmitteln: Sachstandsbericht der Arbeitsgruppen „Abbau/Elimination“ und „Bioteste“ im Hauptausschuß Detergentien unter der Leitung von Dr. K. J. Bock, Dr. L. Huber und Dr. P. Schöberl. Tenside Surfactants Detergents 25(2): 86–98. https://doi.org/10.1515/tsd-1988-250214
Scott M. J., Jones M. N. 2000: The biodegradation of surfactants in the environment. Biochimica et Biophysica Acta (BBA) – Biomembranes 1508(1–2): 235–251. https://doi.org/10.1016/S0304-4157(00)00013-7
Steber J., Berger H. 1995: Biodegradability of anionic surfactants. In: Karsa D. R., Porter M. R. (eds) Biodegradability of surfactants. Springer, Dordrecht, pp. 134–182. https://doi.org/10.1007/978-94-011-1348-9_5
Strzałka K., Kostecka-Gugała A., Latowski D. 2003: Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russian Journal of Plant Physiology 50: 168–173. https://doi.org/10.1023/A:1022960828050
Uzma S., Khan S., Murad W., Taimur N., Azizullah A. 2018: Phytotoxic effects of two commonly used laundry detergents on germination, growth, and biochemical characteristics of maize (Zea mays L.) seedlings. Environmental Monitoring and Assessment 190: 651. https://doi.org/10.1007/s10661-018-7031-6
Vanitha S., Vighnesh L., Sreekar V. 2017: A study on the effects of cleaning agents (household) on seed germination. International Journal of Advance Research in Science and Engineering 6(spec. 1): 198–203.
Witzenberger A., Hack H., van der Boom T. 1989: Erläuterungen zum BBCH-Dezimal-Code für die Entwicklungsstadien des Getreides – mit Abbildungen. Gesunde Pflanzen 41(11): 384–388.
Zhou J., Wu Z., Yu D., Pang Y., Cai H., Liu Y. 2018: Toxicity of linear alkylbenzene sulfonate to aquatic plant Potamogeton perfoliatus L. Environmental Science and Pollution Research 25: 32303–32311. https://doi.org/10.1007/s11356-018-3204-7
Hivatkozott biztonsági adatlapok:
CLEANECO Organikus Mosógél Koncentrátum Biztonsági adatlap. Termékazonosító: CLEANECO Organikus Univerzális Mosógél Koncentrátum. Felülvizsgálat utolsó dátuma: 2016.06.21., verzió: 1.0.
Henkel biztonsági adatlap Persil GEL COLOR. Termékazonosító: Persil GEL COLOR. Felülvizsgálat utolsó dátuma: 2016.10.11., BA száma: 74289, verzió: 1.3.
P&G Biztonsági adatlap: Ariel Mountain Spring. Termékazonosító: 90766657_RET_CLP_EUR_SAW. Felülvizsgálat utolsó dátuma: 2019.09.09. verzió: 1.0.
Unilever Biztonsági adatlap: Coccolino Care mosógél színes ruhákhoz. Termékkód: 67674665. Felülvizsgálat utolsó dátuma: 2023.05.152019.05.30., verzió: 1.0.
Világháló hivatkozások
http1 – From nature with love – Saponification chart. https://www.fromnaturewithlove.com/resources/sapon.asp (Hozzáférés: 2024.08.15)
http2 – Zöldbolt – Mosószer házilag: takarékos és környezetkímélő megoldás mosószappanból. https://www.zoldbolt.hu/magazin/Mososzer_hazilag_takarekos_es_kornyezetkimelo?srsltid=AfmBOopfIwkgq2QbDkXPMgWiV3TvOUUX1ktwJI8XW4n6_bDAMZstYSpm (Hozzáférés: 2024.08.15)