Effect of thermal behaviour on burning of plactic coating for electric cables
Abstract
Cable is in the first place amongst the cause of fire. Fires are always triggered by unsafe and non-standard conditions, so, we can approach safety if we know the properties of cables we want to use. Cable fires may have two starting points: one is the heat reaching the plastic insulation of cables, due to the fire created by burning, the other one may be due to the fire generated by the overvoltage in the inappropriately sized cables when the outer plastic coating begins to burn. The basic condition of fire retardant is that wire breaks or short circuits may not occur in a cable system. During this research, both effects are tested on fire retardant cables. On the one hand, we exposed wires of various plastic sheaths to flame and to heat, as well as tested at which actual oxygen content they start combustion and flame propagation. Each combustion starts with thermal decomposition, so it is of particular importance in the thermal behavior of plastic coatings and the expected burns. The selected samples were examined by thermoanalytical method (DTA, TG, TDG). The most important parameters are the weight loss and the initial temperature of the decomposition, which also indicate the expected ignition point of the plastics.
References
Kruppa Attila: Villamos vezetékrendszerek tűzvédelme. OBO Bettermann Kft., Bugyi. 2013.
http://www.katasztrofavedelem.hu/ - A villamos energia által okozott tűzesetek megelőzése, letöltés: 2016-10-30, kereső: google.hu, kulcsszavak: tűz, elektromos kábel
Kerekes Zsuzsanna - Gyöngyössy Éva - Elek Barbara: Tűzálló kábelek műanyag burkolatának új és hagyományos vizsgálati módszereinek összehasonlító elemzése. Védelem Tudomány, II. 3. (2017), pp. 24-36.
Varga Dávid - Kerekes Zsuzsanna - Elek, Barbara: Elektromos vezetékek túlterhelésének vizsgálata a tűzvédelmi biztonságra. Védelem Tudomány, II. 3. (2017), pp. 37-52
W. English, Safety During Fire — Low Fire-hazard Cables Improve Safety, 2010 20.
Eurocable, Low Fire-hazard Cables Improve Safety, http://www.safety-duringfire.com2015 (accessed March 09, 2015).
Edward DW. Fire-protective and flame-retardant coatings – A state-of-the-art review. J Fire Sci 2011;29(3):259–96.
T.R. Hull, D. Price, Y. Liu, C.L.Wills, J. Brady, An investigation into the decomposition and burning behaviour of ethylene-vinyl acetate copolymer nanocomposte materials, Polym. Degrad. Stab. 82 (2003) 365–371, http://dx.doi.org/10.1016/S0141-3910(03)00214-3.
Y. Hu, S. Li, The effects of magnesiumhydroxide on flash pyrolysis of polystyrene, J. Anal. Appl. Pyrolysis 78 (2007) 32–39, http://dx.doi.org/10.1016/j.jaap.2006. 03.007.
M. Sain, S. Park, F. Suhara, S. Law, Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide, Polym. Degrad.
Stab. 83 (2004) 363–367, http://dx.doi.org/10.1016/S0141-3910(03)00280-5.
P.R. Hornsby, C.L.Watson, A study of the mechanism of flame retardance and smoke suppression in polymers filled with magnesium hydroxide, Polym. Degrad.
Stab. 30 (1990) 73–87, http://dx.doi.org/10.1016/0141-3910(90)90118-Q.
Fire Testing Technology Ltd. Industrial Standards, http://www.fire-testing.com/ [13] MSZ EN 50200, MSZ EN 50362, IEC 60331 Szigetelőképesség-megtartás
Gyöngyössy, Éva (SZIE – Ybl Miklós Építéstudományi Kar építészmérnök IV., tűz- és katasztrófavédelmi szakirány): Tűzálló kábelek műanyag burkolatának minősítési kérdései. Dipolomadolgozat 2017.
Kerekes Zsuzsanna - Lublóy Éva - Kopecskó Katalin : Behaviour of tyres in fire: Determination of burning characteristics of tyres. Journal of thermal analysis and calorimetry, 133. 1. (2018), pp. 279- 287.
Érces Gergő – Ambrusz József: A katasztrófák építésügyi vonatkozásai Magyarországon. Védelem Tudomány, IV.2. (2019), pp. 45-83.
Érces Gergő – Bérczi László - Rácz Sándor: The effects of the actively used reactive and passive fire protection systems established by innovative fire protection methods for whole life-cycle of buildings. Műszaki Katonai Közlöny, XXVIII, 4. (2018), pp. 47-58