Drought-induced changes in photosynthetic parameters of seedlings of 22 barley cultivars

  • Anna Skribanek University of West Hungary, Faculty of Science and Technology, Biology Institute, Szombathely, Károlyi Gáspár tér 4; H-9700, Hungary
  • Ildikó Schmidthoffer Nyugat-magyarországi Egyetem, Természettudományi és Műszaki Kar, Biológia Intézet, 9700 Szombathely, Károlyi Gáspár tér 4.
  • Péter Csontos Hungarian Academy of Sciences, Centre for Agricultural Research, Institute for Soil Science and Agricultural Chemistry, P. O. Box 102, Budapest, H–1525; Hungary
Keywords: barley, chlorophyll, drought stress, fluorescence, photosynthesis

Abstract

Characteristic changes can be observed in the physiology of plants during drought stress: water-loss is reduced due to the closure of stomata, root growth and later shoot growth are reduced, photosynthetic processes are inhibited – among other physiological changes. 22 barley (Hordeum vulgare L.) varieties were tested in order to investigate the physiological effects of drought stress. Measurements were performed on nine-day old seedlings using PAM chlorophyll fluorescence imaging in four replicates. Drought stress was induced by 20% PEG (polyethylene glycol) 6000 solution and 16 hours of drying. Te maximum quantum yield (Fv/Fm), the yield (Y) and the non-photochemical quenching (NPQ) were measured afer the drought stress. All three parameters were signifcantly reduced in response to drought conditions: the maximum quantum yield decreased by 16%, the yield decreased by 8% and the non-photochemical quenching decreased by 94%. Based on these results the investigated parameters could be good indicators of drought tolerance of barley genotypes, even in the early stages of their development.

References

Abdeshahian M., Nabipour M., Meskarbashee M. 2010: Chlorophyll fluorescence as criterion for the diagnosis of salt stress in wheat (Triticum aestivum) plants. World Academy of Science, Engineering and Technology 71: 569–571.

Aro E-M., Virgin I., Andersson B. 1993: Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta 1143: 113–134. http://dx.doi.org/10.1016/0005-2728(93)90134-2

Aro E-M., Suorsa M., Rokka A., Allahverdiyeva Y., Paakkarinen V., Saleem A., Battchikova N., Rintamäki E. 2005: Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. Journal of Experimental Botany 56 (411): 347–356. http://dx.doi.org/10.1093/jxb/eri041

Bączek-Kwinta R., Kozieł A., Seidler-Łożykowska K. 2011: Are the fluorescence parameters of German chamomile leaves the first indicators of the anthodia yield in drought conditions? Photosynthetica 49 (1): 87–97. http://dx.doi.org/10.1007/s11099-011-0013-3

Baker N. R. 2008: Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology 59: 89–113. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092759

Baker N.R., Rosenqvist E. 2004: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany 55 (403): 1607–1621. http://dx.doi.org/10.1093/jxb/erh196

Bálint A. F., Szira F., Galiba G., Jäger K., Fábián A., Barnabás B. 2009: Szárazságtűrési vizsgálatok gabonaféléken. In: Veisz O. (szerk.): A martonvásári agrárkutatások hatodik évtizede – Martonvásár 1949–2009. pp. 43–48.

Balouchi H. R. 2010: Screening wheat parents of mapping population for heat and drought tolerance, detection of wheat genetic variation. International Journal of Biology and Life Sciences 4(6): 56–66.

Calatayud A., Roca D., Martínez P. F. 2006: Spatial-temporal variations is rose leaves under water stress conditions studied by chlorophyll fluorescence imaging. Plant Physiology and Biochemistry 44(10): 564–573. http://dx.doi.org/10.1016/j.plaphy.2006.09.015

Chaves M. M., Flexas J., Pinheiro C. 2009: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103(4): 551–560. http://dx.doi.org/10.1093/aob/mcn125

Faria T., Silvério D., Breia E., Cabral R., Abadía A., Abadía J., Pereira J. S., Chaves M. M. 1998: Differences in the response of carbon assimilation to summer stress (water deficits, high light and temperature) in four Mediterranean tree species. Physiologia Plantarum 102: 419–428. http://dx.doi.org/10.1034/j.1399-3054.1998.1020310.x

Hassan I. A., 2006: Effects of water stress and high temperature on gas exchange and chlorophyll fluorescence in Triticum aestivum L. Photosynthetica 44(22): 312–315. http://dx.doi.org/10.1007/s11099-006-0024-7

Henson I. E., Jensen C. R., Turner N. C. 1989: Leaf gas exchange and water relations of lupins and wheat. III. Abscisic acid and drought-induced stomatal closure. Functional Plant Biology 16(5): 429–442. http://dx.doi.org/10.1071/pp9890429

Jäger K., Fábián A., Eitel G., Szabó L., Deák Cs., Barnabás B., Papp I. 2014: A morpho-physiological approach differentiates bread wheat cultivars of contrasting tolerance under cyclic water stress. Journal of Plant Physiology 171: 1256–1266. http://dx.doi.org/10.1016/j.jplph.2014.04.013

Jamieson P. D., Francis G. S., Wilson D. R., Martin R. J. 1995: Effects of water deficits on evapotranspiration from barley. Agricultural and Forest Meteorology 76: 41–58. http://dx.doi.org/10.1016/0168-1923(94)02214-5

Jamil M., Rehman S. U., Lee K. J., Kim J. M., Kim H. S., Rha E. S. 2007: Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. Scientia Agricola 64(2): 111–118. http://dx.doi.org/10.1590/s0103-90162007000200002

Kerepesi I., Galiba G. 2000: Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science 40(2): 482–487. http://dx.doi.org/10.2135/cropsci2000.402482x

Khamssi N. N., Najaphy A. 2012: Comparison of photosynthetic components of wheat genotypes under rain-fed and irrigated conditions. Photochemistry and Photobiology 88(1): 76–80. http://dx.doi.org/10.1111/j.1751-1097.2011.01008.x

Mamnouie E., Fotouhi Ghazvini R., Esfahany M., Nakhoda B. 2006: The effects of water deficit on crop yield and the physiological characteristics of barley (Hordeum vulgare L.) varieties. Journal of Agricultural Science and Technology 8: 211–219.

Pálfai I. 2011: Aszályos évek az Alföldön 1931–2010 között, pp: 87–96, In: Rakonczai J. (szerk.): Környezeti változások és az Alföld. Nagyalföld Alapítvány Kötetei 7. Nagyalföld Alapítvány, Békéscsaba, 396 pp.

Rapacz M.; Kocieiniak J., Jurczyk B. 2010: Different patterns of physiological and molecular response to drought in seedlings of malt- and feed-type barleys (Hordeum vulgare). Journal of Agronomy and Crop Science 196(1): 9–19. http://dx.doi.org/10.1111/j.1439-037x.2009.00389.x

Shangguan Z. P.; Shao M. G.; Dyckmmans J. 2000: Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat, Journal of Plant Physiology 156(1): 46–51. http://dx.doi.org/10.1016/s0176-1617(00)80271-0

Sinha N. C., Patil B. D. 2006: Screening of barley varieties for drought resistance. Plant Breeding 97(1): 13–19. http://dx.doi.org/10.1111/j.1439-0523.1986.tb01296.x

Skribanek A., Tomcsányi A. 2008: Sörárpafajták szárazságstressz reakciói. A Nyugat-magyarországi Egyetem Savaria Egyetemi Központ Tudományos Közleményei XVI. Természettudományok 11: 137–145.

Slavík, B. 1974: Methods of studying plant water relations. Springer-Verlag, Berlin.

Solti Á., Gáspár L., Mészáros I., Szigeti Z., Lévai L., Sárvári É. 2008: Impact of iron supply on the kinetics of recovery of photosynthesis in Cd-stressed poplar (Populus glauca). Annals of Botany 102: 771–782. http://dx.doi.org/10.1093/aob/mcn160

Stocker O. 1929: Vizsgálatok különböző termőhelyen nőtt növények vízhiányának nagyságáról. Erdészeti Kísérletek 31: 63–76.

Szira F., Bálint A. F., Börner A., Galiba G. 2008: Evaluation of drought-related traits and screening methods at different developmental stages in spring barley. Journal of Agronomy and Crop Science 194(5): 334–342. http://dx.doi.org/10.1111/j.1439-037x.2008.00330.x

Tang Y., Wen X., Lu Q., Yang Z., Cheng Z., Lu C. 2007: Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiology 143: 629–638. http://dx.doi.org/10.1104/pp.106.090712

Vaz J., Sharma P.K. 2011: Relationship between xanthophy cycle and non-photochemical quenching in rice (Oryza sativa L.) plants in response to light stress. Indian Journal of Experimental Biology 49: 60–67.

Zlatev Z. 2009: Drought-induced changes in chlorophyll fluorescence of young wheat plants. Biotechnology & Biotechnological Equipment 23(1): 437–441. http://dx.doi.org/10.1080/13102818.2009.10818458
Published
2016-12-15
Section
Original articles