Comparison of the micromorphology of greyish oak (Quercus robur L. subsp. pedunculiflora (K. Koch) Menitsky) and pedunculate oak (Quercus robur L. subsp. robur) inflorescences

Keywords: fasciculate trichome, indumentum, pollen, SEM, stellate trichome, trichome density

Abstract

In the present study, we compared the micromorphology of the inflorescences of greyish oak (Quercus robur L. subsp. pedunculiflora (K. Koch) Menitsky) and pedunculate oak (Quercus robur L. subsp. robur). Greyish oak samples were collected in Romania, while pedunculate oak samples were collected in Hungary and Romania during the springs of 2023, 2024, and 2025, across a total of 11 sites. The 70 samples originated from 33 trees. Micromorphological traits of the inflorescences – primarily the presence and type of trichomes – were examined using scanning electron microscopy (SEM) on the inflorescence axis as well as on floral organs, including cupule primordia, stigma, staminal filaments, and anthers. On both female and male inflorescence axes, trichome density was determined and trichome ray length was measured. Pollen grains were also examined to a limited extent. No indumentum was detected on the stigma, anthers, or staminal filaments in either taxon. In contrast, stellate and fasciculate trichomes were observed on the female inflorescence axis, on cupule primordia, and on the male inflorescence axis in both taxa. In the pedunculate oak samples, some female inflorescences displayed a completely glabrous axis – representing a clear micromorphological distinction between the two taxa in our material. The female inflorescence axis of greyish oak was characterized by approximately fourfold higher trichome density compared to that of pedunculate oak (93.71 vs. 25.00 trichomes/mm²). Longer trichome rays were also recorded in greyish oak, both in stellate trichomes (329.14 ± 86.01 μm) and fasciculate trichomes (468.39 ± 117.31 μm), whereas in pedunculate oak the respective values were 152.63 ± 63.83 μm and 225.59 ± 74.23 μm. A significant difference in pollen grain length was also detected, with values of 35.67 ± 4.11 μm in greyish oak and 32.83 ± 4.04 μm in pedunculate oak. The higher trichome density of greyish oak inflorescences may serve as a useful diagnostic trait in identifying the taxon. A more developed indumentum covering not only the reproductive parts but also the leaves shown in our earlier study may contribute to an improved drought tolerance, a potentially advantageous feature under the recent climate change. This study provides the first detailed micromorphological comparison of the inflorescences of greyish oak and pedunculate oak, thereby contributing new insights into the morphological differentiation of these two closely related taxa.

References

Apostol E. N. 2019: Variabilitatea descriptorilor frunzelor în populații autohtone de stejar pedunculat (Quercus robur L.) și stejar brumăriu (Quercus pedunculifl ora K. Koch). Editura Silvică, Voluntari, 127 pp.

Bacilieri R., Ducousso A., Kremer A. 1995: Genetic, morphological, ecological and phenological differentiation between Quercus petraea (Matt.) Liebl. and Quercus robur L. in a mixed stand of northwest of France. Silvae Genetica 44(1): 1–10.

Bartha D. 2022: Dendrológia. Soproni Egyetem Kiadó, Sopron, 169 pp.

Bartha D., Berki I., Lengyel A., Rasztovits E., Tiborcz V., Zagyvai G. 2018: Erdőtársulások és fafajaik átrendeződési lehetőségei a változó klímában. Erdészettudományi Közlemények 8(1): 163–195. https://doi.org/10.17164/EK.2018.011

Bordács S. 1994–1995: Virágzásbiológiai megfigyelések kocsányos tölgy (Quercus robur L.) egyedeken. Erdészeti és Faipari Tudományos Közlemények 40–41: 53–65.

Browne L., Wright J. W., Fitz-Gibbon S., Gugger P. F., Sork V. L. 2019: Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene flow. Proceedings of the National Academy of Sciences of the U.S.A. 116(50): 25179–25185. https://doi.org/10.1073/pnas.1908771116

Chesnoiu E. N., Şofletea N., Curtu A. L., Toader A., Radu R., Enescu M. 2009: Bud burst and flowering phenology in a mixed oak forest from Eastern Romania. Annals of Forest Research 52: 199–206. https://doi.org/10.15287/afr.2009.136

Curtu A. L., Sofletea N., Toader A. V., Enescu M. C. 2011: Leaf morphological and genetic differentiation between Quercus robur L. and its closest relative, the drought-tolerant Quercus pedunculiflora K. Koch. Annals of Forest Science 68: 1163–1172. https://doi.org/10.1007/s13595-011-0105-z

Di Marco G., D’Agostino A., Braglia R., Redi E. L., Iacobelli S., Gismondi A., Canini A. 2023: Pollen variability in Quercus L. species and relative systematic implications. Plant Physiology and Biochemistry 204: 108079. https://doi.org/10.1016/j.plaphy.2023.108079

Gencsi L., Vancsura R. 1992: Dendrológia. Mezőgazda Kiadó, Budapest, 728 pp.

Georgescu C. C., Morariu I. 1948: Monografi a Stejarilor din Romania. Ministerul Silviculturei Institutul de Cercetări Forestriere al Republicei Populare Române, București 2(77): 1–42.

Hammer Ø., Harper D. A. T., Ryan P. D. 2001: PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4: 1–9.

Hayrapetyan A., Bruch A. A. 2020: Pollen morphology of some species of the genus Quercus L. (Fagaceae) in the Southern Caucasus and adjacent areas. Acta Palaeobotanica 60(1): 1–42. https://doi.org/10.35535/acpa-2020-0001

Hegedüs I. M., Bordács S., Bartha D. 2023: Comparative studies on leaf micromorphology of the abaxial surface of Quercus robur L. subsp. robur and Quercus robur L. subsp. pedunculiflora (K. Koch) Menitsky. Acta Silvatica et Lignaria Hungarica 19(2): 75–85. https://doi.org/10.37045/aslh-2023-0006

Hegedüs I., Sramkó G., Bartha D. 2025: Morphometric analysis of leaf indumentum distinguishes greyish oak (Quercus pedunculiflora K. Koch) and pedunculate oak (Quercus robur L.) across their Central-Eastern European range. Central European Forestry Journal 71(3): 159–169. https://doi.org/10.2478/forj-2025-0005

IPCC 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee, Romero J. (eds.)]. IPCC, Geneva, Switzerland, 184 pp. https://doi.org/10.59327/IPCC/AR6-9789291691647

Jalas J., Suominen J. 1976: Atlas Florae Europaeae. Distribution of vascular plants in Europe III. Salicaceae to Balanophoraceae. The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki, 128 pp.

Kaul R. B. 1985: Reproductive morphology of Quercus (Fagaceae). American Journal of Botany 72(12): 1962–1977. https://doi.org/10.1002/j.1537-2197.1985.tb08470.x

Kim I., Kwak M. J., Lee J. K., Lim Y., Park S., Kim H., Lee K. A., Woo S. Y. 2020: Flowering phenology and characteristics of pollen aeroparticles of Quercus species in Korea. Forests 11(2): 232. https://doi.org/10.3390/f11020232

Koch K. 1849: Beiträge zu einer Flora des Orientes II. Linnaea 22: 177–338.

Mátyás V. 1962a: Tölgyeink virágzás- és termésbiológiája, mint a magtermés fokozásának alapja. Erdészeti Kutatások 58(1–3): 3–35.

Mátyás V. 1962b: Tölgyeink virágzás- és termésbiológiájának gyakorlati vonatkozásai. Az Erdő 11(3): 104–115.

Mátyás V. 1967: Vizsgálatok a tölgyek virágzás- és termésbiológiájáról. Doktori értekezés, kézirat, Sopron, 196 pp.

Menitsky Yu. L. 1984: Oaks of Asia. Science Publishers, Leningrad, 316 pp.

Panahi P., Pourmajidian M. R., Fallah A., Pourhashemi M. 2012: Pollen morphology of Quercus (subgenus Quercus, section Quercus) in Iran and its systematic implication. Acta Societatis Botanicorum Poloniae 81(1): 33–41. https://doi.org/10.5586/asbp.2012.005

Pjatnyickij S. S. 1951: K voprosztü o tak nazüraemoj periodicsnoszty plodosenija ud duba. Lesznoje Hozjajsztvo 8: 70–75.

Romasov N. V. 1957: Zakonomernoszti plodosenija duba. Botanicseszkij Zsurnal 42(1): 41–56.

Sadowski E.-M., Schmidt A. R., Denk T. 2020: Staminate inflorescences with in situ pollen from Eocene Baltic amber reveal high diversity in Fagaceae (oak family). Willdenowia 50(3): 405–517. https://doi.org/10.3372/wi.50.50303

Schneider C. A., Rasband W. S., Eliceiri K. W. 2012: NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675. https://doi.org/10.1038/nmeth.2089

Tekleva M. V., Polevova S., Naryshkina N. N. 2023: Pollen characteristics used in determination and systematics of Quercus (Fagaceae): new data and verification of previous concepts. Botanical Journal of the Linnean Society 202(4): 542–571. https://doi.org/10.1093/botlinnean/boad001

Tóth Gy. 1986: Megfigyelések a gödöllői kocsányostölgy-plantázsban. Erdészeti Kutatások 78(1): 59–64.

Tschan G. F., Denk T. 2012: Trichome types, foliar indumentum and epicuticular wax in the Mediterranean gall oaks, Quercus subsection Galliferae (Fagaceae): implications for taxonomy, ecology and evolution. Botanical Journal of the Linnean Society 169: 611–644. https://doi.org/10.1111/j.1095-8339.2012.01233.x

Vancsura R. 1972: A tölgynemesítés és a nemesített szaporítóanyag-termesztés helyzete, a magplantázsok virágzásbiológiai problémái. Erdészeti és Faipari Egyetem Tudományos Közleményei 1972/1–2: 35–48.

Živković A. B., Nikolić M. Š., Stojanović D. B., Orlović S., Kovačević B. 2025: Variability and relationship between phenological and morphological traits in early and late pedunculate oak. Forests 16(2): 198. https://doi.org/10.3390/f16020198

Published
2025-11-19
How to Cite
HegedüsI., & Bartha D. (2025). Comparison of the micromorphology of greyish oak (Quercus robur L. subsp. pedunculiflora (K. Koch) Menitsky) and pedunculate oak (Quercus robur L. subsp. robur) inflorescences. Botanikai Közlemények, 112(2), 209-224. https://doi.org/10.17716/BotKozlem.2025.112.2.209
Section
Original articles