The phreatomagmatic pyroclastic-sequence of Badacsony Hill: implications on the processes and landforms of monogenetic basaltic volcanism

  • Mátyás Hencz ELTE-TTK, Department of Physical Geography, e-mail: hencz.matyi92@gmail.com
  • Dávid Karátson ELTE-TTK, Department of Physical Geography
  • Károly Németh Massey University, Volcanic Risk Solutions CS-INR
  • Tamás Biró ELTE-TTK, Department of Physical Geography
Keywords: Badacsony, Bakony-Balaton Highland Volcanic Field, image analysis, maar, monogenetic, phreatomagmatic eruption, tuff ring

Abstract

In this paper we give the first quantitative description and volcanological interpretation of the Badacsony Hill, the most known butte of the Bakony–Balaton Highland Volcanic Field (BBHVF). Pyroclast / lithics ratio of the pyroclastics were investigated by using point counting image analysis methodology on cutted surfaces of hand specimens. The isometrical shape of different grains allowed to convert the obtained 2D data to 3D volume data. By using this methodology, it was possible to infer to the relative depth of explosions with respect to the synvolcanic surface and to the syneruptive morphology and to identify the effusive and explosive phases of the volcanism.

The results of point counting image analysis and the position and extent of the pyroclastic sequence on the Badacsony Hill imply, that the Badacsony was a monogenetic (probably polycyclic) tuff ring or shallow maar volcano. Such volcanism is associated with interaction of hot melt with groundwater, which trigger shallow explosions. The low amount of accidental lithics within the deposits confirm the tuff ring scenario. Although, such low amount of accidental lithics could be observed within deposits from shallow maars were formed on soft, unconsolidated basement. This model can be possible for Badacsony.

The course of the volcanism can be divided into explosive and effusive phases based on the different composition and on the relative stratigraphic position of the pyroclastic sequences. Based on these results we proposed a volcanic evolution model. Regarding the scarcity of volcanological data on the Badacsony Hill, present results could give a basis for further regional volcanological investigations.

References

AGUSTIN-FLORES, J., NÉMETH K., CRONIN, S. J., LINDSAY, J. M., KERESZTURI G., BRAND, B. D., SMITH, I. E. M. 2014: Phreatomagmatic eruptions through unconsolidated coastal plain sequences, Maungataketake, Auckland Volcanic Field (New Zealand). - Journal of Volcanology and Geothermal Research, 276, pp. 46–63.; http://doi.org/10.1016/j.jvolgeores.2014.02.021
AGUSTÍN-FLORES, J., NÉMETH K., CRONIN, J. S., LINDSAY, J. M., KERESZTURI G. 2015: Shallow-seated explosions in the contruction of the Motukorea tuff ring (Auckland, New Zealand): Evidence from lithic and sedimentary characteristics. - Journal of Volcanology and Geothermal Research, 304, pp. 272–286.; http://doi.org/10.1016/j.jvolgeores.2015.09.013
BALOGH K., JÁMBOR A., PARTÉNYI Z., RAVASZNÉ BARANYAI L., SOLTI G. 1982: A dunántúli bazaltok K/Ar radiometrikus kora. - Magyar Állami Földtani Intézet Jelentése 1980, pp. 243–260.
BALOGH K., ÁRVA-SÓS E., PÉCSKAY Z., RAVASZ-BARANYAI L. 1986: K/Ar dating of post-Sarmatian alkali basaltic rocks in Hungary. - Acta Mineralogica et Petrographica, Szeged 28, pp. 75–94.
BORSY Z., BALOGH K., KOZÁK M., PÉCSKAY Z. 1986: Újabb adatok a Tapolcai-medence fejlődéstörténetéhez. - Acta Geographica Debrecina, 23, pp. 79–104.
BUDAI T. & CSILLAG G. (szerk.) 1999: A Balaton-felvidék földtana: Magyarázó a Balaton-felvidék földtani térképéhez, 1:50000. - Magyar Állami Földtani Intézet, 257 p.
BUDAI T., CSILLAG G., DUDKO A., KOLOSZÁR L. 1999: A Balaton-felvidék földtani térképe - Geological map of the Balaton Highland, 1:50000. - Magyar Állami Földtani Intézet, Budapest.
CARMONA, J., ROMERO, C., DÓNIZ, J., GARCÍA, A. 2011: Characterization and facies analysis of the hydrovolcanic deposit of Montana Pelada tuff ring: Tenerife, Canary Islands. - Journal of African Earth Sciences, 59, pp. 41–50. http://doi.org/10.1016/j.jafrearsci.2010.07.003
EMBEY-ISZTIN A. 1976: Amphibolite/lherzolite composite xenolith from Szigliget, north of the lake Balaton, Hungary. - Earth and Planetary Science Letters, 31/2, pp. 297–304. http://doi.org/10.1016/0012-821x(76)90223-5
FISHER, R. V. & SCHMINCKE, H.-U. 1984: Pyroclastic Rocks. - Heidelberg, Springer, 474 p. http://doi.org/10.1007/978-3-642-74864-6
GESHI, N., NÉMETH K., OIKAWA, T. 2011: Growth of phreatomagmatic explosion craters: A model inferred from Suoana crater in Miyakejima Volcano, Japan. - Journal of Volcanology and Geothermal Research, 201(1-4), pp. 30-38. http://doi.org/10.1016/j.jvolgeores.2010.11.012
GRAETTINGER, A. H., VALENTINE, G. A., SONDER, I. 2016: Recycling in debris-filled volcanic vents. - Geology 44(10), pp. 811-814.; http://doi.org/10.1130/g38081.1
HEIKEN, G. 1974: An atlas of volcanic ash. - Smithsonian Institution Press, Washington, Smithsonian Contributions to the Earth Sciences, 12, 102 p. http://doi.org/10.5479/si.00810274.12.1
HOFMANN K. 1874: A déli Bakony bazaltjai. - Földtani Közlöny, 4/12, pp. 303–312.
HOUGHTON, B. F. & SMITH, R. T. 1993: Recycling of magmatic clasts during explosive eruptions: estimating the true juvenile content of phreatomagmatic volcanic deposits. - Bulletin of Volcanology, 55/6, pp. 414–420. http://doi.org/10.1007/bf00302001
JUGOVICS L. 1973: Balaton-parti bazaltbányászat. - A Veszprém megyei Múzeumok Közleményei, 12. sz., pp. 123–136.
KERESZTURI G., CSILLAG G., NÉMETH K., SEBE K., BALOGH K., JAGER V. 2010: Volcanic architecture, eruption mechanism and landform evolution of a Plio/Pleistocene intracontinental basaltic polycyclic monogenetic volcano from the Bakony-Balaton Highland Volcanic Field, Hungary. - Central European Journal of Geosciences, 2(3), pp. 362–384. http://doi.org/10.2478/v10085-010-0019-2
KERESZTURI G. & NÉMETH K. 2012: Monogenetic Basaltic Volcanoes: Genetic Classification, Growth, Geomorphology and Degradation. - Updates in Volcanology - New Advances in Understanding Volcanic Systems, NÉMETH K. (szerk.), pp. 3–89. http://doi.org/10.5772/51387
KOMA ZS. & ZLINSZKY A. 2014: DTM generation using land cover classification based on low density lidar data. - Geophysical Research Abstracts, 16, EGU2014-9397, EGU General Assembly
LEFEBVRE, N. S., WHITE, J. D. L., KJARSGAARD, B. A. 2013: Unbedded diatreme deposits reveal maar-diatreme-forming eruptive processes: Standing Rocks West, Hopi Buttes, Navajo Nation, USA. - Bulletin of Volcanology 75(8). http://doi.org/10.1007/s00445-013-0739-9
LÓCZY L. 1913: A Balaton tudományos tanulmányozásának eredményei. 1. köt. 1. r. 1. szakasz. A Balaton környékének geológiai képződményei és ezeknek vidékek szerinti telepedése. - Magyar Földrajzi Társaság, Balaton Bizottság, Budapest, 617 p.
LORENZ, V. 1973: On the Formation of Maars. - Bulletin Volcanologique, 37/2, pp. 183–204. http://doi.org/10.1007/bf02597130
LORENZ, V. 1986: On the growth of maars and diatremes and its relevance to the formation of tuff rings. - Bulletin of Volcanology, 48, pp. 265–274.; https://doi.org/10.1007/bf01081755
LORENZ, V. 2003. Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments. - Geolines, 15, pp. 72–83.
MARTIN, U. & NÉMETH K. 2002: Interaction between lava lakes and pyroclastic sequences in phreatomagmatic volcanoes: Haláp and Badacsony, Western Hungary. - Geologica Carpathica 53, CBGA Konferencia
MARTIN, U. & NÉMETH K. 2004: Mio/Pliocene phreatomagmatic volcanism in the western Pannonian Basin. - Geologica Hungarica, Series Geologica, Tomus 26, Magyar Állami Földtani Intézet, Budapest, 191 p.
MARTIN, U., NÉMETH K., AUER, A., BREITKREUZ, C. 2003: Mio-Pliocene Phreatomagmatic Volcanism in a Fluvio-Lacustrine Basin in Western Hungary. - Geolines, 15, pp. 84–90.
NÉMETH K. 2010: Volcanic glass textures, shape characteristics and compositions of phreatomagmatic rock units from the Western Hungarian monogenetic volcanic fields and their implications for magma fragmentation. - Central European Journal of Geosciences, 2/3, pp 399–419. https://doi.org/10.2478/v10085-010-0015-6
NÉMETH K. & CSILLAG G. 1999: Tapolcai Bazalt Formáció. - In: BUDAI T.& CSILLAG G. (szerk.) 1999: A Balaton-felvidék földtana - Magyarázó a Balaton-felvidék földtani térképéhez, 1:50000. Magyar Állami Földtani Intézet, Budapest, pp. 114–122.
NÉMETH K. & MARTIN, U. 1999: Large hydrovolcanic field in the Pannonian Basin: general characteristics of the Bakony-Balaton Highland Volcanic Field, Hungary. - Acta Vulcanologica, 11/2, pp. 271–282.
NÉMETH K. & MARTIN, U. 2007: Practical Volcanology - Lecture Notes for Understanding Volcanic Rocks from Field Based Studies. - Magyar Állami Földtani Intézet, 207, 221 p.
NÉMETH K., MARTIN, U., CSILLAG G. 2007: Pitfalls in erosion level calculation based on remnants of maar and diatreme volcanoes. - Geomorphologie-Relief Processus Environment, 3, pp. 225–235. http://doi.org/10.4000/geomorphologie.3822
NÉMETH K. & WHITE, C. 2005: Víz alatti volt-e a mio-pliocén vulkánosság a Snake-síkság vulkánvidéken (Idaho, USA)? - Terepi megfigyelések, mint az őskörnyezeti rekonstrukció eszközei. - Magyar Állami Földtani Intézet Jelentése, 2005, Budapest, pp. 77–94.
NÉMETH K., MARTIN, U., HARANGI SZ. 2001: Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary). - Journal of Volcanology and Geothermal Research, 111, pp. 111–135. http://doi.org/10.1016/s0377-0273(01)00223-2
NÉMETH K., MARTIN, U., CSILLAG G., 2003: Calculation of erosion rates based on remnants of monogenetic
alkaline basaltic volcanoes in the Bakony–Balaton Highland Volcanic Field (Western Hungary) of Mio/Pliocene age. - Geolines - Journal of the Geological Institute of AS Czech Republic, 15, pp. 93–97.
NÉMETH K., CRONIN, S. J., HALLER, M. J., BRENNA, M., CSILLAG G. 2010: Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: “soft-substrate” to “combined” aquifer controlled phreatomagmatism in intraplate volcanic fields. - Central European Journal of Geosciences, 2(3), pp. 339–261. http://doi.org/10.2478/v10085-010-0013-8
NÉMETH, K., AGUSTIN-FLORES, J., BRIGGS, R., CRONIN, S. J., KERESZTURI, G., LINDSAY, J. M., PITTARI, A., SMITH, I. E. M. 2012a: Monogenetic volcanism of the South Auckland and Auckland Volcanic Fields. - IAVCEI—CMV/CVS—IAS 4IMC Conference Auckland, New Zealand, pp. 57–59.
NÉMETH K., CRONIN, S. J., SMITH, I. E. M., AGUSTIN-FLORES, J. A. 2012b: Amplified hazard of small-volume monogenetic eruptions due to environmental controls, Orakei Basin, Auckland Volcanic Field, New Zealand. - Bulletin of Volcanology, 74(9), pp. 2121–2137. http://doi.org/10.1007/s00445-012-0653-6
SCHOPKA, H. H., GUDMUNDSSON, M. T., TUFFEN, H. 2006: The formation of Helgafell, southwest Iceland, a monogenetic subglacial hyaloclastite ridge: Sedimentology, hydrology and volcano-ice interaction. - Journal of Volcanology and Geothermal Research, 152, pp. 359–377. http://doi.org/10.1016/j.jvolgeores.2005.11.010
SHERIDAN, M. F. & WOHLETZ, K. H. 1983: Hydrovolcanism - Basic considerations and review. - Journal of Volcanology and Geothermal Research, Elsevier Science Publishers B. V., Amsterdam, pp. 1–29. http://doi.org/10.1016/0377-0273(83)90060-4
STRONCIK, N. A. & SCHMINCKE, H.-U. 2002: Palagonite - a review. - International Journal of Earth Sciences, 91/4, pp. 680–697. http://doi.org/10.1007/s00531-001-0238-7
SZABÓ CS., HARANGI SZ., CSONTOS L. 1992: Review of Neogene and Quaternary volcanism of the Carpathian-Pannonian region. - Tectonophysics, 208, Issues 1-3, pp. 243–256. http://doi.org/10.1016/0040-1951(92)90347-9
SZTANÓ O., MAGYAR I., SZÓNOKY M., LANTOS M., MÜLLER P., LENKEY L., KATONA L., CSILLAG G. 2013: A Tihanyi Formáció a Balaton környékén: típusszelvény, képződési körülmények, rétegtani jellemzés. - Földtani Közlöny, 143(1), pp. 445–468.
TCHAMABE, B. C., OHBA, T., KERESZTURI G., NÉMETH K., AKA, F. T., YOUMEN, D., ISSA MIYABUCHI, Y., OOKI, S., TANYILEKE, G., HELL, J. V. 2015: Towards the reconstruction of the shallow plumbing system of the Barombi Mbo Maar (Cameroon) Implications for diatreme growth processes of a polygenetic maar volcano. - Journal of Volcanology and Geothermal Research, 301, pp. 293-313. http://doi.org/10.1016/j.jvolgeores.2015.06.004
THORDARSON, T. 2004: Accretionary-lapilli-bearing pyroclastic rocks at ODP Leg 192 Site 1184: a record of subaerial phreatomagmatic eruptions on the Ontong Java Plateau. - Geological Society, London, Special Publications, 229(1), pp. 275–306. http://doi.org/10.1144/gsl.sp.2004.229.01.16
VALENTINE, G. A., WHITE, J. D. L. 2012: Revised conceptual model for maar-diatremes: Subsurface processes, energetics, and eruptive products. - Geology, 40(12), pp. 1111–1114. http://doi.org/10.1130/g33411.1
VALENTINE, G. A., GRAETTINGER, A. H., MACORPS, E., ROSS, P.-S., WHITE, J. D. L., DOEHRING, E., SONDER, I. 2015: Experiments with vertically and laterally migrating subsurface explosions with applications to the geology of phreatomagmatic and hydrothermal explosion craters and diatremes. - Bulletin of Volcanology, 77(3). ; http://doi.org/10.1007/s00445-015-0901-7
WALKER, G. P. L. 1993: Basaltic-volcano systems. - In: PRICHARD, H. M., ALABASTER, T., HARRIS, H. B. W., NEARLY, C. R. (szerk.): Magmatic Processes and Plate Tectonics. Geological Society, Special Publications, London, pp. 3–38. http://doi.org/10.1144/gsl.sp.1993.076.01.01
WIJBRANS, J., NÉMETH K., MARTIN, U., BALOGH K. 2007: 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. - Journal of Volcanology and Geothermal Research, 164, pp. 193–204. http://doi.org/10.1016/j.jvolgeores.2007.05.009
WOHLETZ, K. H. & HEIKEN, G. 1992: Volcanology and Geothermal Energy. - University of California Press, Ber-keley, 432 p
WOMER, M. B., GREELY, R., KING, J. S. 1980: The Geology of Split Butte - A maar of the South-Central Snake River Plain, Idaho. - Bulletin of Volcanology, 43/3, pp. 453–471. ; http://doi.org/10.1007/bf02597685
Published
2017-09-25
Section
Articles