New application of game theory in supply chain management

  • Tamás Kozák Budapest Business School Faculty of Commerce, Hospitality and Tourism, Department of Commerce
  • Éva Fenyvesi Budapest Business School Faculty of Commerce, Hospitality and Tourism, Department of Economics and Business Studies
Keywords: Supply chain, Economic order quantity, Game theory, Prisoner's dilemma, Equilibrium strategies

Abstract

Game theory has become an essential tool in the analysis of supply chains with multiple players who often have different interests. In this study, we use the game theory to examine the possibility of decision optimization and achieving equilibrium in the operation of the supply chain. Our goal is to determine the optimal agreement between the wholesaler and the retailer(s) to minimize the total cost in the supply chain in the given situation.

The research method used in the study enriches the literature on the topic by linking the minimization of costs not to abstract evaluation metrics but to the stock order item size often calculated in real business as well. This facilitates the interpretation of the strategies and decision motivations used by the members of the supply chain.

Author Biographies

Tamás Kozák, Budapest Business School Faculty of Commerce, Hospitality and Tourism, Department of Commerce

Associate professor

Éva Fenyvesi, Budapest Business School Faculty of Commerce, Hospitality and Tourism, Department of Economics and Business Studies

College professor

References

Aumann, R. J., 1959. Acceptable points in general cooperative n-person games. In: Tucker, A. W. and Luce, R. P. (eds): Contributions to the theory of games, Vol. IV. Princeton: Princeton University Press, pp. 287-324.

Cachon, G. P. & Netessine, S., 2004. Game theory in supply chain analysis. In: Simchi-Levi, S., Wu, S. D. & Shen, Z. M. (eds.), Handbook of Quantitative Supply Chain Analysis: Modelling in the E-Business Era. Boston: Kluwer, pp. 13-66.

Cachon, G. P. & Netessine, S., 2014. Game Theory in Supply Chain Analysis. INFORMS TutORials in Operations Research. null(null), 200-233. https://doi.org/10.1287/educ.1063.0023

De Giovanni, P., 2011. Quality improvement vs. advertising support: which strategy works better for a manufacturer? European Journal of Operational Research, 208(2), 119–130. https://doi.org/10.1016/j.ejor.2010.08.003

Dimand, M. A. & Dimand R. W. (1997). The Foundations of Game Theory, in three volumens. Cheltenhan: Edward Elgar.

Dobos, I. & Pintér, M., 2010a. Cooperation in supply chains: A cooperative game theoretic analysis. 133. sz. Műhelytanulmány HU ISSN 1786-3031. Budapest: Budapesti Corvinus Egyetem Vállalatgazdaságtan Intézet.

Dobos, I. & Pintér, M., 2010b. Cooperation in an HMMS-type supply chain: A management application of cooperative game theory. 135. sz. Műhelytanulmány. ISSN 1786-303. Budapest: Budapesti Corvinus Egyetem Vállalatgazdaságtan Intézet.

Dobos, I., 2012. Együttműködés és verseny ellátási láncokban: játékelméleti perspektíva. In: Egyensúly és optimum. Tanulmányok Forgó Ferenc 70. születésnapjára. Budapest: Aula Kiadó, pp. 13-22.

Gáspár, S., Vajda, G. & Martos, E., 2021. Qualification of the results of aggregated lean kpis along fuzzy logic. Multidiszciplináris kihívások, sokszínű válaszok. 2021(2), https://doi.org/10.33565/MKSV.2021.02.01

Giri, B. C., Chakraborty, A. & Maiti, T., 2015. Quality and pricing decisions in a two-echelon supply chain under multi-manufacturer competition. Int J Adv Manuf Technol, Vol. 78. 1927–1941. https://doi.org/10.1007/s00170-014-6779-2

Harsanyi, J., 1968a. Games with incomplete information played by Bayesian players., I-III. Part I. The Basic Model. Management Science 14(3) 159-182. https://doi.org/10.1287/mnsc.14.3.159

Harsanyi, J., 1968b. Games with incomplete information played by Bayesian players., I-III. The Basic Probability Distribution of the Game. Part II. Bayesian Equilibrium Points. Management Science 14(7) 320-334. https://doi.org/10.1287/mnsc.14.5.320

Harsanyi, J., 1968c. Games with incomplete information played by Bayesian players., I-III. Part III. The Basic Probability Distribution of the Game Management Science 14(7) 486-502. https://doi.org/10.1287/mnsc.14.7.486

Hennet, J. C, & Arda, Y., 2008. Supply chain coordination: A game-theory approach. Engineering Applications of Artificial Intelligence. 21(3), 399-405. https://doi.org/10.1016/j.engappai.2007.10.003

Hirschleifer, J., Glazer, A. & Hirschleifer, D., 2009. Mikroökonómia - Árelmélet és alkalmazásai - Döntések, piacok és információ. Budapest: Osiris.

Hsieh, C. C. & Liu, Y. T., 2010. Quality investment and inspection policy in a supplier-manufacturer supply chain. European Journal of Operational Research, 202(3), 717-729. https://doi.org/10.1016/j.ejor.2009.06.013

Juhász, P., Szász, J. & Misik, S., 2019. Az ellátási láncok versenyképessége és finanszírozása – gondolatok az optimumról. Közgazdasági Szemle, 46(1), 53-71. https://doi.org/10.18414/KSZ.2019.1.53

Kozák, T. & Fenyvesi, É., 2020. Készletoptimalizálás a játékelmélet segítségével. Logisztikai trendek és legjobb gyakorlatok. 6(2), 29-34. https://doi.org/10.21405/logtrend.2020.6.2.29

Kuhn, H., 1953. Extensive games and the problem of information. In: Kuhn, H. & Tucker, A. W. (eds): Contributions to the Theory of Games, Vol. 2. pp. 93-198.

Leng, M. & Parlar, M., 2005. Game theoretic applications in supply chain management: a review. INFOR, 43(3), 187-220. https://doi.org/10.1080/03155986.2005.11732725

Li, H., Mai, L., Zhang, W. & Tian, X., 2018. Optimizing the Credit term decisions in supply Chain finance. Journal of Purchasing and supply management, 25(2), 146-156. https://doi.org/10.1016/j.pursup.2018.07.006

Lin, Q. & Xiao, Y., 2018. Retailer credit guarantee in a supply chain with capital constraint under push & pull contract. Computers and industrial engineering, Vol. 125. 245–257. https://doi.org/10.1016/j.cie.2018.08.029

Liu, G., Zhang, J. & Tang, W., 2015. Strategic transfer pricing in a marketing–operations interface with quality level and advertising dependent goodwill. Omega, Vol. 56. 1-15. https://doi.org/10.1016/j.omega.2015.01.004

Maynard Smith, J., 1974. The theory of games and the evolution of animal conflicts. Journal of Theoretical Biology, Vol. 47. 209-221.

Nagurney, A. & Li, D., 2015. A Supply Chain Network Game Theory Model with Product Differentiation, Outsourcing of Production and Distribution, and Quality and Price Competition. Annals of Operations Research, 228(1), 479-503. https://doi.org/10.1007/s10479-014-1692-5

Nash, J., 1950. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, Vol. 36. 48-49.

Pfohl, H. & Gomm, M., 2009. Supply chain finance: optimizing financial flows in supply chains. Logistics Research 1(3-4), 149-161. https://doi.org/10.1007/s12159-009-0020-y

Raj, A., Biswas, I. & Srivastava, S. K., 2018. Designing supply contracts for the sustainable supply chain using game theory. Journal of Cleaner Production, Vol. 185. 275-284. https://doi.org/10.1016/j.jclepro.2018.03.046

Rosenthal, E. C., 2008. A game-theoretic approach to transfer pricing in a vertically integrated supply chain. International Journal of Production Economics 115(2), 542-552. https://doi.org/10.1016/j.ijpe.2008.05.018

Selten, R., 1975. Re-examination of the perfectness concept for equilibrium points in extensive games. International Journal of Game Theory, Vol. 4. 25-55.

Shi, H., 2011. A Game Theoretic Approach in Green Supply Chain Management. Electronic Theses and Dissertations. 158. https://scholar.uwindsor.ca/etd/158 (2020.04.16.)

Shubik, M., 1962. Incentives, decentralized control. the assignment of joint costs and internal pricing. Management Science, Vol. 8. 325-343.

Szép, J. & Forgó, F., 1974. Bevezetés a játékelméletbe. Budapest: Közgazdasági és Jogi Könyvkiadó.

Taleizadeh, A. A., Moshtagh, M. S. & Moon, I., 2017. Optimal decisions of price, quality, effort level and return policy in a three-level closed-loop supply chain based on different game theory approaches. European Journal of Industrial Engineering, 11(4), 486-525. https://doi.org/10.1504/EJIE.2017.086186

Vickrey, W., 1961. Counter speculation, auctions and competitive sealed tenders. Journal of Finance, 16(1), 8-37.

Wee, H-M. & Wang, W-T., 2013. Supply chain coordination for short-life-cycle products with option contract and partial backorders. European Journal of Industrial Engineering, 7(1), 78–99. https://doi.org/10.1504/EJIE.2013.051595

Xie, G., Wang, S. & Lai, K. K., 2011a. Quality improvement in competing supply chains. International Journal of Production Economics, 134(1), 262–270. https://doi.org/10.1016/j.ijpe.2011.07.007

Xie, G., Yue, W., Wang, S. & Lai, K. K., 2011b. Quality investment and price decision in a risk-averse supply chain. European Journal of Operational Research, 214(2), 403-410. https://doi.org/10.1016/j.ejor.2011.04.036

Yu, J. & Ma, S., 2013. Impact of decision sequence of pricing and quality investment in decentralized assembly system. Journal of Manufacturing Systems, (32)4, 664-679. https://doi.org/10.1016/j.jmsy.2013.02.004

Yu, J. & Zhu, D., 2018. Study on the selection strategy of supply Chain financing modes Based on the retailer’s trade grade. Sustainability, 10(9), 1-12. https://doi.org/10.3390/su10093045

Zamarripa, M. A., Aguirre, A. M., Méndez C. A. & Espuña, A., 2013. Mathematical Programming and Game Theory optimization-based tool for Supply Chain Planning in cooperative/competitive environments. Chemical Engineering Research and Design, 91(8), 1588-1600. https://doi.org/10.1016/j.cherd.2013.06.008

Zhan, J., Chen, X. & Li, S., 2018. The impact of financing mechanism on supply chain sustainability and efficiency. Journal of Cleaner Production, Vol. 205. 407–418. https://doi.org/10.1016/j.jclepro.2018.08.347

Zhang, J., Gou, Q., Liang, L. & Huang, Z., 2013. Supply chain coordination through cooperative advertising with reference price effect. Omega, 41(2), 345-353.

Zhao, Y., Wang, S., Cheng, T. C. E., Yang, X., & Huang, Z., 2010. Coordination of supply chains by option contracts: A cooperative game theory approach. European Journal of Operational Research. 207(2), 668-675. https://doi.org/10.1016/j.ejor.2010.05.017

Published
2022-06-30
How to Cite
KozákT., & Fenyvesi Éva. (2022). New application of game theory in supply chain management. Multidisciplinary Challenges, Diverse Responses - Journal of Management and Business Administration, (1), 73-98. https://doi.org/10.33565/MKSV.2022.01.04
Section
Paper