Clinical significance of bacteria in the human body in practice

  • Mónika Fekete Semmelweis University, Faculty of Medicine Department of Public Health, Budapest, Hungary
  • Zsófia Szarvas Semmelweis University, Faculty of Medicine Department of Public Health, Budapest, Hungary
  • Vince Fazekas-Pongor Semmelweis University, Faculty of Medicine Department of Public Health, Budapest, Hungary
  • Ágnes Fehér Semmelweis University, Faculty of Medicine Department of Public Health, Budapest, Hungary
  • János Tamás Varga Semmelweis University, Faculty of Medicine, Department of Pulmonology, Budapest, Hungary
Keywords: microbiome, dysbiosis, intestinal flora, disease risk, probiotic

Abstract

Background: The microbiome (all microbes living in the human body) is made up of billions of microorganisms and the diversity and integrity of the species in it play a crucial role in maintaining the health of the host. The total weight of the intestinal microbiome can reach up to two kilogram, approximately one-third (30%) show huge similarity between species, however the other 70% have an absolutely unique identifier and are unique to us, like a fingerprint. Several studies have described a direct link between the composition of the gut flora and many diseases such as metabolic disorders, obesity, cardiovascular disease, depression, asthma, etc. The aim of our summary study is to present the microbiome and its modification and to review diseases associated with changes in the intestinal microbiome, as well as positively influencing it through different foods and exercise to promote health.

Methodology: Review Hungarian and international medical databases using the keywords microbiome, disease risk, dysbiosis and probiotics.

Results: The microbiome plays an important role in the regulation of the immune system and has been identified as an additive factor in the development of numerous diseases, e.g. inflammatory bowel diseases, metabolic disorders (e.g. obesity, insulin resistance, diabetes), autoimmune diseases, neurological conditions (e.g. autism, Parkinson's disease, Alzheimer's disease), cancers (e.g. breast cancer, colon cancer, liver cancer). Environmental factors, systemic inflammation, increased incidence of disease, and theconcomitant use of drugs alter the composition of the microbial community, which is further exacerbated by physical inactivity and increased intestinal transit time. With ageing and associated diseases, the number of beneficial bacteria such as Lactobacilli and Bifidobacteria decreases, while the number of facultative anaerobes (Enterobacteriaceae, Streptococci, Staphylococci) increases, which can be positively influenced by healthy lifestyle, diet and physical activity. Conclusions: It can be assumed that gut microbiome plays a central role in the pathophysiology of many intestinal and extraintestinal pathologies. The results of microbiome research so far suggest that the ecosystem in the body is the foundation of health and we should do everything possible to maintain its integrity, because with a healthy lifestyle, proper nutrition and exercise, its composition can be positively influenced and it can be play a key role in health promotion.          

Author Biographies

Mónika Fekete, Semmelweis University, Faculty of Medicine Department of Public Health, Budapest, Hungary

 

             
Zsófia Szarvas, Semmelweis University, Faculty of Medicine Department of Public Health, Budapest, Hungary

 

           
Vince Fazekas-Pongor, Semmelweis University, Faculty of Medicine Department of Public Health, Budapest, Hungary

 

       
Ágnes Fehér, Semmelweis University, Faculty of Medicine Department of Public Health, Budapest, Hungary

 

       
János Tamás Varga, Semmelweis University, Faculty of Medicine, Department of Pulmonology, Budapest, Hungary

 

         

References

Arató, A. (2013). Mérföldkövek az immunmediált bélbetegségek patomechanizmusának megértésében az elmúlt 35 évben. Diagnosztikájuk és terápiájuk fejlődése. Orvosi Hetilap, 154(38), 1512–1523. doi: 10.1556/OH.2013.29710

Acharya, C., & Bajaj, J. S. (2019). Altered microbiome in patients with cirrhosis and complications. Clinical Gastroenterology and Hepatology, 17(2), 307–321. doi: 10.1016/j.cgh.2018.08.008

Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., … Bork, P. (2011). Enterotypes of the human gut microbiome. Nature, 473(7346), 174–180. doi: 10.1038/nature09944

Bartels, T., De Schepper, S., & Hong, S. (2020). Microglia modulate neurodegeneration in Alzheimer's and Parkinson's diseases. Science (New York, N.Y.), 370(6512), 66–69. doi: 10.1126/science.abb8587

Battipaglia, G., Malard, F., Rubio, M. T., Ruggeri, A., Mamez, A. C., Brissot, E., Giannotti, F., Dulery, R., Joly, A. C., Baylatry, M. T., Kossmann, M. J., Tankovic, J., Beaugerie, L., Sokol, H., & Mohty, M. (2019). Fecal microbiota transplantation before or after allogeneic hematopoietic transplantation in patients with hematologic malignancies carrying multidrug-resistance bacteria. Haematologica, 104(8), 1682–1688. doi: 10.3324/haematol.2018.198549

Baxter, N. T., Zackular, J. P., Chen, G. Y., & Schloss, P. D. (2014). Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. Microbiome, 2, 20. doi: 10.1186/2049-2618-2-20

Biernat, M. M., Urbaniak-Kujda, D., Dybko, J., Kapelko-Słowik, K., Prajs, I., & Wróbel, T. (2020). Fecal microbiota transplantation in the treatment of intestinal steroid-resistant graft-versus-host disease: two case reports and a review of the literature. The Journal of International Medical Research, 48(6), 300060520925693. doi: 10.1177/0300060520925693

Bik, E. M., Eckburg, P. B., Gill, S. R., Nelson, K. E., Purdom, E. A., Francois, F., Perez-Perez, G., Blaser, M. J., & Relman, D. A. (2006). Molecular analysis of the bacterial microbiota in the human stomach. Proceedings of the National Academy of Sciences of the United States of America, 103(3), 732–737. doi: 10.1073/pnas.0506655103

Brandsma, E., Houben, T., Fu, J., Shiri-Sverdlov, R., & Hofker, M. H. (2015). The immunity-diet-microbiota axis in the development of metabolic syndrome. Current Opinion in Lipidology, 26(2), 73–81. doi: 10.1097/MOL.0000000000000154

Borody, T. J., & Khoruts, A. (2011). Fecal microbiota transplantation and emerging applications. Nature Reviews Gastroenterology & Hepatology, 9(2), 88–96. doi: 10.1038/nrgastro.2011.244

Caricilli, A. M., & Saad, M. J. (2013). The role of gut microbiota on insulin resistance. Nutrients, 5(3), 829–851. doi: 10.3390/nu5030829

Chen, J., Pitmon, E., & Wang, K. (2017). Microbiome, inflammation and colorectal cancer. Seminars in Immunology, 32, 43–53. doi: 10.1016/j.smim.2017.09.006

Chen, J., Guo, Y., Gui, Y., & Xu, D. (2018). Physical exercise, gut, gut microbiota, and atherosclerotic cardiovascular diseases. Lipids in Health and Disease, 17(1), 17. doi: 10.1186/s12944-017-0653-9

Chen, Y., Zhou, J., & Wang, L. (2021). Role and mechanism of gut microbiota in human disease. Frontiers in Cellular and Infection Microbiology, 11, 625913. doi: 10.3389/fcimb.2021.625913

Chen, Z., Guo, L., Zhang, Y., Walzem, R. L., Pendergast, J. S., Printz, R. L., Morris, L. C., Matafonova, E., Stien, X., Kang, L., Coulon, D., McGuinness, O. P., Niswender, K. D., & Davies, S. S. (2014). Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. The Journal of Clinical Investigation, 124(8), 3391–3406. doi: 10.1172/JCI72517

Dave, M., Higgins, P. D., Middha, S., & Rioux, K. P. (2012). The human gut microbiome: current knowledge, challen-ges, and future directions. Translational Research: The Journal of Laboratory and Clinical Medicine, 160(4), 246–257. doi: 10.1016/j.trsl.2012.05.003

DeGruttola, A. K., Low, D., Mizoguchi, A., & Mizoguchi, E. (2016). Current understanding of dysbiosis in disease in human and animal models. Inflammatory Bowel Diseases, 22(5), 1137–1150. doi: 10.1097/MIB.0000000000000750

Durack, J., & Lynch, S. V. (2019). The gut microbiome: Relationships with disease and opportunities for therapy. The Journal of Experimental Medicine, 216(1), 20–40. doi: 10.1084/jem.20180448

Fekete, M., Fazekas-Pongor, V., Szőllősi, G., Pákó J., Bodola, Cs., & Varga, J. T. (2020). A szérum C-reaktív protein szintjének klinikai előrejelző értéke COPD-ben. Orvostovábbképző Szemle, 27(3), 61–67.

Fekete M., Szilasi, M., Fazekas-Pongor, V., Németh, A. N., & Varga, J. T. (2021): A betegségkockázat kapcsolata a fizikai aktivitással és a fittséggel. Medicina Thoracalis (Budapest), 74, 82–90.

Fekete, S., Szabó, D., Tamás, L., & Polony, G. (2019). A mikrobiom szerepe a fül-orr-gégészetben. Orvosi Hetilap, 160(39), 1533–1541. doi: 10.1556/650.2019.31451

Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of Nutrition, 125(6), 1401–1412. doi: 10.1093/jn/125.6.1401

Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883–899. doi: 10.1016/j.cell.2010.01.025

Hakansson, A., & Molin, G. (2011). Gut microbiota and inflammation. Nutrients, 3(6), 637–682. doi: 10.3390/nu3060637

Halmos, T., & Suba, I. (2016). A bélbakterióta élettani jellemzői és a dysbacteriosis szerepe az elhízásban, inzulinrezisztenciában, diabetesben és metabolikus szindrómában. Orvosi Hetilap, 157(1), 13–22. doi: 10.1556/650.2015.30296

Haque, T. R., & Barritt, A. S., 4th (2016). Intestinal microbiota in liver disease. Best Practice & Research Clinical Gastroenterology, 30(1), 133–142. doi: 10.1016/j.bpg.2016.02.004

Harper, A., Vijayakumar, V., Ouwehand, A. C., Ter Haar, J., Obis, D., Espadaler, J., Binda, S., Desiraju, S., & Day, R. (2021). Viral infections, the microbiome, and probiotics. Frontiers in Cellular and Infection Microbiology, 10, 596166. doi: 10.3389/fcimb.2020.596166

Hartstra, A. V., Bouter, K. E., Bäckhed, F., & Nieuwdorp, M. (2015). Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care, 38(1), 159–165. doi: 10.2337/dc14-0769

Johnsen, P. H., Hilpüsch, F., Cavanagh, J. P., Leikanger, I. S., Kolstad, C., Valle, P. C., & Goll, R. (2018). Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial. The Lancet Gastroenterology & Hepatology, 3(1), 17–24. doi: 10.1016/S2468-1253(17)30338-2

Karpiński, T. M. (2019). Role of oral microbiota in cancer development. Microorganisms, 7(1), 20. doi: 10.3390/microorganisms7010020

Kerti, M., Balogh, Zs., & Varga, J. T. (2015). Új eszközök a pulmonológiai fizioterápiában. Medicina Thoracalis (Budapest), 68, 200–205.

Kim, N., Yun, M., Oh, Y. J., & Choi, H. J. (2018). Mind-altering with the gut: Modulation of the gut-brain axis with probiotics. Journal of Microbiology (Seoul, Korea), 56(3), 172–182. doi: 10.1007/s12275-018-8032-4

Leclercq, S., Matamoros, S., Cani, P. D., Neyrinck, A. M., Jamar, F., Stärkel, P., Windey, K., Tremaroli, V., Bäckhed, F., Verbeke, K., de Timary, P., & Delzenne, N. M. (2014). Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proceedings of the National Academy of Sciences of the United States of America, 111(42), E4485–E4493. doi: 10.1073/pnas.1415174111

Lee, C. J., Sears, C. L., & Maruthur, N. (2020). Gut microbiome and its role in obesity and insulin resistance. Annals of the New York Academy of Sciences, 1461(1), 37–52. doi: 10.1111/nyas.14107

Lee, D., Albenberg, L., Compher, C., Baldassano, R., Piccoli, D., Lewis, J. D., & Wu, G. D. (2015). Diet in the patho-genesis and treatment of inflammatory bowel diseases. Gastroenterology, 148(6), 1087–1106. doi: 10.1053/j.gastro.2015.01.007

Lin, L., Zheng, L. J., & Zhang, L. J. (2018). Neuroinflammation, gut microbiome, and Alzheimer's disease. Molecular Neurobiology, 55(11), 8243–8250. doi: 10.1007/s12035-018-0983-2

Lupo, G., Rocchetti, G., Lucini, L., Lorusso, L., Manara, E., Bertelli, M., Puglisi, E., & Capelli, E. (2021). Potential role of microbiome in chronic fatigue yyndrome/myalgic encephalomyelits (CFS/ME). Scientific Reports, 11(1), 7043. doi: 10.1038/s41598-021-86425-6

Maldonado Galdeano, C., Cazorla, S. I., Lemme Dumit, J. M., Vélez, E., & Perdigón, G. (2019). Beneficial effects of probiotic consumption on the immune system. Annals of Nutrition & Metabolism, 74(2), 115–124. doi: 10.1159/000496426

Mangiola, F., Ianiro, G., Franceschi, F., Fagiuoli, S., Gasbarrini, G., & Gasbarrini, A. (2016). Gut microbiota in autism and mood disorders. World Journal of Gastroenterology, 22(1), 361–368. doi: 10.3748/wjg.v22.i1.361

Marasco, G., Di Biase, A. R., Schiumerini, R., Eusebi, L. H., Iughetti, L., Ravaioli, F., Scaioli, E., Colecchia, A., & Festi, D. (2016). Gut microbiota and celiac disease. Digestive Diseases and Sciences, 61(6), 1461–1472. doi: 10.1007/s10620-015-4020-2

Marsh, P. D., Martin, M. V. (2012). Oral Microbiology (5th ed.) Springer.

Nguyen, T. T., Kosciolek, T., Eyler, L. T., Knight, R., & Jeste, D. V. (2018). Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder. Journal of Psychiatric Research, 99, 50–61. doi: 10.1016/j.jpsychires.2018.01.013

Pallen, M. J., & Quraishi, M. N. (2017). The gut microbiota and the hepatologist: Will our bugs prove to be the missing link?. Digestive Diseases (Basel, Switzerland), 35(4), 377–383. doi: 10.1159/000456590

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D. R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., … Wang, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59–65. doi: 10.1038/nature08821

Szucs, B., Petrekanits, M., & Varga, J. (2018). Effectiveness of a 4-week rehabilitation program on endothelial function, blood vessel elasticity in patients with chronic obstructive pulmonary disease. Journal of Thoracic Disease, 10(12), 6482–6490. doi: 10.21037/jtd.2018.10.104

Szucs, B., Szucs, C., Petrekanits, M., & Varga, J. T. (2019). Molecular characteristics and treatment of endothelial dysfunction in patients with COPD: A review article. International Journal of Molecular Sciences, 20(18), 4329. doi: 10.3390/ijms20184329

Tai, N., Wong, F. S., & Wen, L. (2015). The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Reviews in Endocrine & Metabolic Disorders, 16(1), 55–65. doi: 10.1007/s11154-015-9309-0

Clapp, M., Aurora, N., Herrera, L., Bhatia, M., Wilen, E., & Wakefield, S. (2017). Gut microbiota's effect on mental health: The gut–brain axis. Clinics and Practice, 7(4), 987. doi: 10.4081/cp.2017.987

Varga, J., Palinkas, A., Lajko, I., Horváth, I., Boda, K., & Somfay, A. (2016). Pulmonary arterial pressure response during exercise in COPD: A correlation with C-reactive protein (hsCRP). The Open Respiratory Medicine Journal, 10, 1–11. doi: 10.2174/1874306401610010001

Varga, J. (2016) A légzésrehabiliáció elméleti és gyakorlati lapjai. Ellátási színterei. Korányi Bulletin, 1, 44–47.

Varga, J. (2018). Krónikus obstruktív tüdőbetegség. Háziorvos Továbbképző Szemle, 23, 54–58.

Varga, J. (2018). A pulmonológiai rehabilitáció kézikönyve. SpringMed Kiadó.

Varga, J., Munkácsi, A., Máthé, Cs., Somfay, A., Bálint, B., Lovász, O., Várdi, K., Pesti, A., Koncz, M., & Szilasi, M. (2018). A belégző izmok tréningjének hatása a betegek fizikai állapotára COPD-ben. Medicina Thoracalis (Budapest), 71(2), 96–102.

Walker, A. W., Sanderson, J. D., Churcher, C., Parkes, G. C., Hudspith, B. N., Rayment, N., Brostoff, J., Parkhill, J., Dougan, G., & Petrovska, L. (2011). High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiology, 11, 7. doi: 10.1186/1471-2180-11-7

Wilkins, L. J., Monga, M., & Miller, A. W. (2019). Defining dysbiosis for a cluster of chronic diseases. Scientific Reports, 9(1), 12918. doi: 10.1038/s41598-019-49452-y

World Health Organization. (‎2003)‎. Diet, nutrition and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation, Geneva, 28 January - 1 February 2002. World Health Organization. https://apps.who.int/iris/handle/10665/42665

Wu, J. C. (2012). Psychological co-morbidity in functional gastrointestinal disorders: Epidemiology, mechanisms and management. Journal of Neurogastroenterology and Motility, 18(1), 13–18. doi: 10.5056/jnm.2012.18.1.13

Zhuang, H., Cheng, L., Wang, Y., Zhang, Y. K., Zhao, M. F., Liang, G. D., Zhang, M. C., Li, Y. G., Zhao, J. B., Gao, Y. N., Zhou, Y. J., & Liu, S. L. (2019). Dysbiosis of the gut microbiome in lung cancer. Frontiers in Cellular and Infection Microbiology, 9, 112. doi: 10.3389/fcimb.2019.00112

Published
2021-12-10
How to Cite
Fekete, M., Szarvas, Z., Fazekas-Pongor,V., Fehér, Ágnes, & Varga, J. T. (2021). Clinical significance of bacteria in the human body in practice. Health Promotion, 62(4), 31-43. https://doi.org/10.24365/ef.v62i4.6928
Section
Review