Analyzing the social networks of adolescent students to support behavior change interventions
Abstract
Background: Recently, there has been increasing attention directed towards understanding behavior change. The behavior patterns formed at younger ages determine later choices throughout one’s life, therefore this age group can be the main target of interventions aiming at behavior change. Better understanding of the social connections between classmates seems to be essential for successful interventions. The aim of this study is to analyze the social networks of school classes among Hungarian adolescents with network analysis methods to support more targeted behavior change interventions.
Methodology: The study links to the 2015 Healthstyle Survey, where the data collection on the social connections in classes was also carried out with 680 7th graders (13-14 years old) from 40 classes. First, we tried to create plausible clusters of the questions and analyze what conclusions could be drawn from them about the different social networks that are present in a class. We also examined whether the number of questions in the questionnaire used for the survey could be reduced in a purely informational sense, thus speeding up and assisting future data collection.
Results: We were able to detect three distinct groups of questions: questions on rejection, popularity, and sympathy. Along these questions, three completely different social networks form in a class. Also, according to our results, the reproduction of the information collected by using the 29-question questionnaire, could be 90% with only 10 questions and 95% with 15 questions.
Conclusion: Based on our results, when designing school interventions for adolescent-focused behavior change, it seems sufficient to map only one from the three social networks present in a class with an abbreviated questionnaire. Thus, with less data collection and simpler analysis, more targeted interventions can be designed and implemented, which is likely to increase the success of the behavior change intervention.
References
Balku, E., Tóth, G., Nárai, E., Zsiros, E., Varsányi, P., & Vitrai, J. (2017). Methodology for identification of healthstyles for developing effective behavior change interventions. Journal of Public Health (Germany), 25(4), 387–400. doi: 10.1007/s10389-017-0799-y
Beal, A. C. A., Ausiello, J., & Perrin, J. M. J. (2001). Social influences on health – Risk behaviors among minority middle school students. Journal of Adolescent Health, 28(6), 474–480. doi: 10.1016/S1054-139X(01)00194-X
Blanchet, K. & James, P. (2012). How to do (or not to do) … a social network analysis in health systems research. Health Policy and Planning, 27(5), 438–446. doi: 10.1093/heapol/czr055
Christakis, N. A. & Fowler., J. H. (2009). Connected: The surprising power of our social networks and how they shape our lives. Little, Brown.
Csardi, G. & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Sy, 1695. http://igraph.org
Fruchterman, T. M. J. & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21(11), 1129–1164. doi: 10.1002/spe.4380211102
Grunspan, D. Z., Wiggins, B. L., & Goodreau, S. M. (2014). Understanding classrooms through social network analysis: A primer for social network analysis in education research. Cell Biology Education, 13(2), 167–178. doi: 10.1187/cbe.13-08-0162
Hair, E. C., Moore, K. A., Garrett, S. B., Ling, T., & Cleveland, K. (2008). The continued importance of quality parent-adolescent relationships during late adolescence. Journal of Research on Adolescence, 18(1), 187–200. doi: 10.1111/j.1532-7795.2008.00556.x
Hawe, P. & Ghali, L. (2008). Use of social network analysis to map the social relationships of staff and teachers at school. Health Education Research, 23(1), 62–69. doi: 10.1093/her/cyl162
Járomi, É., Szűcs, E., & Vitrai, J. (2016). Egészségstílusokhoz illesztett , viselkedésváltozást célzó beavatkozások tervezése. Egészségfejlesztés, 57(2), 34–50. doi: 10.24365/ef.v57i2.47
Jones, D. (2006). Sociometry and social network analysis : Applications and implications. Australian and Aotearoa New Zealand Psychodrama Association Journal, 76. http://aanzpa.org/system/files/ANZPA_Journal_15_art10.pdf
Mérei, F. (2006). Közösségek rejtett hálózata. Osiris.
Moreno, J. L. (1953). Who shall survive? Foundations of sociometry, group psychotherapy and sociodrama. Beacon House Inc.
Moreno, Z. T. (2000). The function of ‘tele’ in human relations. In Zeig, J. (Ed.),The evolution of psychotherapy: A meeting of the minds (pp. 289–301). Erickson Foundation Press
Murray, C. J. L., Aravkin, A. Y., Zheng, P., Abbafati, C., Abbas, K. M., Abbasi-Kangevari, M., Abd-Allah, F., Abdelalim, A., Abdollahi, M., Abdollahpour, I., Abegaz, K. H., Abolhassani, H., Aboyans, V., Abreu, L. G., Abrigo, M. R. M., Abualhasan, A., Abu-Raddad, L. J., Abushouk, A. I., Adabi, M., … Lim, S. S. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396(10258), 1223–1249. doi: 10.1016/S0140-6736(20)30752-2
OECD Global Science Forum (2009, September). Report on applications of complexity science for public policy: New tools for finding unanticipated consequences and unrealized opportunities. [Workshop report]. OECD Global Science Forum 2009, Erice, Italy.
Pons, P. & Latapy, M. (2006). Computing communities in large networks using random walks. Journal of Graph Algorithms and Applications, 10(2), 191–218. doi: 10.7155/jgaa.00124
R Development Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org
Sousa Lourenco, J., Ciriolo, E., Rafael Rodrigues Vieira De Almeida, S., &Troussard, X. (2016). Behavioural insights applied to policy: European report 2016. Publications Office. doi: 10.2760/707591
Taller, Á. & Csizmadia, P. (2016). Viselkedésértés – A magatartástudomány eredményeinek hasznosítása a szakpolitika alkotásban. Egészségfejlesztés, 57(2), 55–61. doi: 10.24365/ef.v57i2.39
Valente, T.W., Gallaher P., & Mouttapa, M. (2004). Using social networks to understand and prevent substance use: A transdisciplinary perspective. Substance Use & Misuse, 39(10–12), 1685–1712. doi: 10.1081/ja-200033210
Valente, T. W., Hoffman, B. R., Ritt-Olson, A., Lichtman, K., & Johnson, C. A. (2003). Effects of a social-network method for group assignment strategies on peer-led tobacco prevention programs in schools. American Journal of Public Health, 93(11), 1837–1843. doi: 10.2105/ajph.93.11.1837
Varsányi, P., Tóth, G., Vitrai, J., & Vokó, Z. (2022). Associations between classroom networks and health behaviour of adolescents. Journal of Public Health. doi: 10.1007/s10389-021-01690-z
Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244. doi: 10.1080/01621459.1963.10500845
Copyright (c) 2022 Péter Varsányi, , Gergely Tóth, , Zoltán Vokó, (Szerző)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.