Introduction of Large-Scale Mechanical Railway Substructure Repair Technology in Hungarian Railway Construction
Abstract
The full-scale renewal and modernisation of the elements of the Hungarian railway network forming part of the trans-European core network (TEN-T) was intensified in the framework of the Transport Operational Programme in the period 2009-2016. The introduction of modern technologies was an obvious solution to carry out the rehabilitation of the railway subgrade, given the significant lengths of track that were undergoing work during the programme. However, to be able to introduce the new technologies in Hungary, the regulatory framework governing the design, technical control and construction processes had to be renewed. Before the construction work could start, a mixture of a crushed stone supplementary layer, which is essential for the mechanized rehabilitation of railway subgrades, had to be developed in quarries in the country. During the accreditation process, the methods of design and technical verification were initially carried out in parallel with those used previously until equivalence was demonstrated. Laboratory tests and the construction of trial sections were used to finalise the stone mixture and the technology. The new construction method used resulted in a significant reduction in track possession times due to the high technical quality and very short construction times compared to the conventional technology, and also allowed the application of several important environmental benefits. By using the complete crushed stone recycling technology, the machines reduced the amount of stone material to be supplied and removed, with respect to both the substructure supplementary layer and the ballast material. In addition to the high technical standard achieved, the application of modern mechanised railway subgrade rehabilitation technology reduced the CO2 emissions of the reconstruction work and, at the same time, the ecological footprint of the railway lines.
References
Chan, H.-Y., Xu, Y., Wang, Z., & Chen, A. (2024). The deeper and wider social impacts of transportation infrastructure: From travel experience to sense of place and academic performance. Transport Policy, 158, 51–63. https://doi.org/10.1016/j.tranpol.2024.09.008
Chen, Y., Zhao, C., Chen, S., Chen, W., Wan, K., & Wei, J. (2023). Riding the Green Rails: Exploring the nexus between high-speed trains, Green Innovation, and carbon emissions. Energy, 282, 128955. https://doi.org/10.1016/j.energy.2023.128955
Erdei, A. (2020). Az Elektronikus Jegyértékesítés Regionális Kihívásai a magyar Vasútnál. Multidiszciplináris Kihívások, Sokszínű Válaszok, (2), 23–42. https://doi.org/10.33565/mksv.2020.02.02
Ficzere Péter (2024). Vasúti közlekedés során keletkező zajok okainak és hatásainak elemzése, International Journal of Engineering and Management Sciences, 9(1), 116–130. https://doi.org/10.21791/ijems.2024.009
Font, A., Hedges, M., Han, Y., Lim, S., Bos, B., Tremper, A. H., & Green, D. C. (2024). Air Quality on UK diesel and hybrid trains, Environment International, 187, 108682. https://doi.org/10.1016/j.envint.2024.108682
Grotte, J., Erdeiné Késmárki Gally, S., & Erdei, A. (2021). A Magyar Vasút Személyforgalmi Kihívásai a Változó Európai világban. Európai Tükör, 24(3), 77–101. https://doi.org/10.32559/et.2021.3.4
Han, I., Samarneh, L., Stock, T. H., & Symanski, E. (2018). Impact of transient truck and train traffic on ambient air and noise levels in underserved communities. Transportation Research Part D: Transport and Environment, 63, 706–717. https://doi.org/10.1016/j.trd.2018.07.010Horvát Ferenc & Horváth Róbert (2016). Design of railway substructure works performed by formation rahabilitation machines and experiences of the executation in Hungary. In STRAHOS 2016 : zborník prednášok 17. seminára traťového hospodárstva. pp. 53–60.
Horváth Róbert (2014): Vasúti pályák rechabilitációjának műszaki, környezetvédelmi és minőségbiztosítási szempontja Budapesti és Pest Megyei Mérnöki Kamara, Közlekedési szakterület, Vasúti szakmai továbbképzés Budapest 2014.
Lalive, R., Luechinger, S., & Schmutzler, A. (2018). Does expanding regional train service reduce air pollution? Journal of Environmental Economics and Management, 92, 744–764. https://doi.org/10.1016/j.jeem.2017.09.003
Lichtberger B. (2022). Das Große Handbuch der Gleisinstandhaltung mit Neubau und Umbau Band 1.. Verlag GmbH. Hamburg
Liu, Z., Diao, Z., & Lu, Y. (2024). Can the opening of high-speed rail boost the reduction of air pollution and carbon emissions? quasi-experimental evidence from China. Socio-Economic Planning Sciences, 92, 101799. https://doi.org/10.1016/j.seps.2023.101799
Major Zoltán, Horváth Róbert, Szennay Áron, & Szigeti Cecília. (2023a). EXAMINATION AND OPTIMIZATION OF THE ECOLOGICAL FOOTPRINT OF EMBEDDED RAIL STRUCTURES In Conference Proceedings of the 7th FEB International Scientific Conference: Strengthening Resilience by Sustainable Economy and Business - Towards theSDGs (pp. 19-27). http://doi.org/10.18690/um.epf.3.2023.5
Major Zoltán, Horváth Róbert., Szennay Áron., & Szigeti Cecília. (2023b). Ecological Footprint Analysis of Tramway Track Structures. CHEMICAL ENGINEERING TRANSACTIONS, 107(Online), 283-288. http://doi.org/10.3303/CET23107048
MÁV Zrt. D 11. számú Utasítás VASÚTI ALÉPÍTMÉNY TERVEZÉSE, ÉPÍTÉSE,KARBANTARTÁSA ÉS FELÚJÍTÁS I. kötet
Priyan, S., Guo, Y., McNabola, A., Broderick, B., Caulfield, B., O’Mahony, M., & Gallagher, J. (2024). Detecting and quantifying PM2.5 and NO2 contributions from train and road traffic in the vicinity of a major railway terminal in Dublin, Ireland, Environmental Pollution, 361, 124903. https://doi.org/10.1016/j.envpol.2024.124903
Stojić, N., Štrbac, S., Ćurčić, L., Pucarević, M., Prokić, D., Stepanov, J., & Stojić, G. (2023). Exploring the impact of transportation on Heavy Metal Pollution: A Comparative Study of trains and Cars. Transportation Research Part D: Transport and Environment, 125, 103966. https://doi.org/10.1016/j.trd.2023.103966
Vaccaro, R., Maino, F., Zubaryeva, A., & Sparber, W. (2024), The environmental impact in terms of CO2 of a large-scale train infrastructure considering the electrification of heavy-duty road transport. iScience, 27(10), 110987. https://doi.org/10.1016/j.isci.2024.110987
Yoo, S., Kumagai, J., Hong, S., Kawasaki, K., Zhang, B., & Managi, S. (2023), Economic and air pollution disparities: Insights from transportation infrastructure expansion, Transportation Research Part D: Transport and Environment, 125, 103981. https://doi.org/10.1016/j.trd.2023.103981
2012. évi CLXXXV. Törvény a hulladékról
