Fogászati kompozit tömőanyagok nanoindentációs keménységi vizsgálata

  • MAJA LAURA JARÁBIK
  • ANDRÁS JAKAB
  • TAMÁS TARJÁNYI
  • RÓBERT JURÁK
  • GÁBOR GULYÁS
  • MÁRTON SÁMI
  • KRISZTIÁN BALI
  • KRISZTIÁN BALI
  • MÁRK DR. FRÁTER
Kulcsszavak: bulk technika, rétegzett tömés, rövid üvegszál megerősítésű kompozit, keménység, hagyományos kompozit

Absztrakt

Bevezetés: A rövid üvegszál megerősítésű kompozitok (SFRC-k) ígéretes alternatívát kínálnak a mély, magas volumenfaktorú
kavitások helyreállítására. Vizsgálatunk célja a folyékony SFRC anyag felszíni keménységének meghatározása
különböző tömési technikák mellett nanoindentáció segítségével.
Anyag és módszer: Négy csoportban (n = 18 / csoport) különböző tömési technikával készült kompozit mintákat vizsgáltunk:
rétegzett hagyományos kompozit, rétegzett SFRC, bulk-fill SFRC és bulk-fill kompozit. A minták keménységét
azok tetején, oldalán és alján mértük nanoindentációval, vízben tárolás előtt és után.
Eredmények: A bulk-fill kompozit csoport szignifikánsan alacsonyabb keménységi értékeket mutatott minden mérési
szinten. Az SFRC minták – rétegzett és bulk technikával egyaránt – magasabb vagy hasonló keménységet produkáltak
a hagyományos kompozithoz képest.
Következtetések: Az SFRC anyag alkalmazása klinikailag releváns alternatívát jelenthet a mély kavitások helyreállításában,
mivel megfelelő keménységet biztosít különböző tömési technikák mellett is.

Hivatkozások

Haak R, Näke T, Park K-J, Ziebolz D, Krause F, Schneider H:

Internal and marginal adaptation of high-viscosity bulk-fill composites

in class II cavities placed with different adhesive strategies.

Odontology 2019; 107: 374–382.

https://doi.org/10.1007/s10266-018-0402-1

Demarco FF, Corrêa MB, Cenci MS, Moraes RR, Opdam NJM:

Longevity of posterior composite restorations:

Not only a matter of materials. Dental Materials 2012; 28: 87–101.

https://doi.org/10.1016/j.dental.2011.09.003

Da Rosa Rodolph o PA, Donassollo TA, Cenci MS , Loguércio AD,

Moraes RR, Bronkhorst EM , et al: 22-Year clinical evaluation of the

performance of two posterior composites with different filler

characteristics. Dental Materials 2011; 27: 955–963.

https://doi.org/10.1016/j.dental.2011.06.001

Taha NA, Palamara JE, Messer HH: Fracture strength and

fracture patterns of root filled teeth restored with

direct resin restorations. Journal of Dentistry 2011; 39: 527–535.

https://doi.org/10.1016/j.jdent.2011.05.003

Sadr A, Bakhtiari B, Hayashi J, Luong MN, Chen Y-W, Chyz G,

et al: Effects of fiber reinforcement on adaptation and bond

strength of a bulk-fill composite in deep preparations.

Dental Materials 2020; 36: 527–534.

https://doi.org/10.1016/j.dental.2020.01.007

Lassila L, Säilynoja E, Prinssi R, Vallittu PK, Garoushi S:

Fracture behavior of Bi-structure fiber-reinforced composite

restorations. Journal of the Mechanical Behavior of

Biomedical Materials 2020; 101: 103444.

https://doi.org/10.1016/j.jmbbm.2019.103444

Lassila L, Säilynoja E, Prinssi R, Vallittu P, Garoushi S:

Characterization of a new fiber-reinforced flowable composite.

Odontology 2019; 107: 342–352.

https://doi.org/10.1007/s10266-018-0405-y

Jakab A, Palkovics D, T. Szabó V, Szabó B, Vincze-Bandi E,

Braunitzer G, et al: Mechanical Performance of Extensive

Restorations Made with Short Fiber-Reinforced Composites

without Coverage: A Systematic Review of In Vitro Studies.

Polymers 2024; 16: 590.

https://doi.org/10.3390/polym16050590

ElAziz RHA, ElAziz SAA, ElAziz PMA, Frater M, Vallittu PK,

Lassila L, et al: Clinical evaluation of posterior flowable short

fiber-reinforced composite restorations without proximal

surface coverage. Odontology 2024; 112: 1274–1283.

https://doi.org/10.1007/s10266-024-00905-5

Lourenço AL, Jager ND, Prochnow C, Milbrandt Dutra

DA, Kleverlaan CJ: Young’s modulus and Poisson ratio of

composite materials: Influence of wet and dry storage. Dent

Mater J 2020; 39: 657–663.

https://doi.org/10.4012/dmj.2019-165

Battancs E, Sáry T, Molnár J, Braunitzer G, Skolnikovics M,

Schindler Á, et al: Fracture Resistance and Microleakage

around Direct Restorations in High C-Factor Cavities.

Polymers (Basel) 2022; 14: 3463.

https://doi.org/10.3390/polym14173463

Harp YS, Montaser MA, Zaghloul NM: Flowable fiber-reinforced

versus flowable bulk-fill resin composites: Degree of conversion

and microtensile bond strength to dentin in high C-factor cavities.

J Esthet Restor Dent 2022; 34: 699–706.

https://doi.org/10.1111/jerd.12901

Magne P, Carvalho MA, Milani T: Shrinkage-induced cuspal

deformation and strength of three different short fiber-reinforced

composite resins. J Esthet Restor Dent 2023; 35: 56–63.

https://doi.org/10.1111/jerd.12998

Néma V, Kunsági-Máté S, Őri Z, Kiss T, Szabó P, Szalma J, et al:

Relation between internal adaptation and degree of conversion of

short-fiber reinforced resin composites applied in bulk or

layered technique in deep MOD cavities.

Dental Materials 2024; 40: 581–592.

https://doi.org/10.1016/j.dental.2024.02.013

Braga R, Boaro L, Kuroe T, Azevedo C, Singer J: Influence of

cavity dimensions and their derivatives (volume and ‘C’ factor)

on shrinkage stress development and microleakage of

composite restorations. Dental Materials 2006; 22: 818–823.

https://doi.org/10.1016/j.dental.2005.11.010

Park J, Chang J, Ferracane J, Lee IB: How should composite be

layered to reduce shrinkage stress: Incremental or bulk filling?

Dental Materials 2008; 24: 1501–1505.

https://doi.org/10.1016/j.dental.2008.03.013

Fronz a BM , Rueggeberg FA, Braga RR, Mogilevych B, Soares LES ,

Martin AA, et al: Monomer conversion, microhardness, internal

marginal adaptation, and shrinkage stress of bulk-fill resin

composites. Dental Materials 2015; 31: 1542–1551.

https://doi.org/10.1016/j.dental.2015.10.001

Bucuta S, Ilie N: Light transmittance and micro-mechanical

properties of bulk fill vs. conventional resin based composites.

Clin Oral Invest 2014; 18: 1991–2000.

https://doi.org/10.1007/s00784-013-1177-y

Al-Zain AO, Baeesa L, Jassoma E, Alghilan MA, Hariri M,

Ismail EH, et al: Assessment of internal porosities for different

placement techniques of bulk-fill resin-based composites:

a micro-computed tomography study.

Clin Oral Invest 2023; 27: 7489–7499.

https://doi.org/10.1007/s00784-023-05337-z

Al-Nahedh H, Alawami Z: Fracture Resistance and Marginal

Adaptation of Capped and Uncapped Bulk-fill Resin-based Materials.

Operative Dentistry 2020; 45: e43–56.

https://doi.org/10.2341/17-367-L

Tsujimoto A, Jurado C, Barkmeier W, Sayed M, Takamizawa T,

Latta M, et al: Effect of Layering Techniques on Polymerization

Shrinkage Stress of High- and Low-viscosity Bulk-fill Resins.

Operative Dentistry 2020; 45: 655–663.

https://doi.org/10.2341/19-217-L

He LH, Swain MV: Nanoindentation derived stress–strain

properties of dental materials.

Dental Materials 2007; 23: 814–821.

https://doi.org/10.1016/j.dental.2006.06.017

Takahashi A, Sato Y, Uno S, Pereira PNR, Sano H: Effects of

mechanical properties of adhesive resins on bond strength to dentin.

Dental Materials 2002; 18: 263–268.

https://doi.org/10.1016/S0109-5641(01)00046-X

Van Meerbeek B, Willems G, Celis JP, Roos JR, Braem M,

Lambrechts P, et al: Assessment by Nano-indentation of the

Hardness and Elasticity of the Resin-Dentin Bonding Area.

J Dent Res 1993; 72: 1434–1442.

https://doi.org/10.1177/00220345930720101401

Sadr A, Shimada Y, Lu H, Tagami J: The viscoelastic behavior of

dental adhesives: A nanoindentation study.

Dental Materials 2009; 25: 13–19.

https://doi.org/10.1016/j.dental.2008.05.001

Attik N, Colon P, Gauthier R, Chevalier C, Grosgogeat B,

Abouelleil H: Comparison of physical and biological properties of

a flowable fiber reinforced and bulk filling composites.

Dental Materials 2022; 38: e19–30.

https://doi.org/10.1016/j.dental.2021.12.029

Karacolak G, Turkun LS, Boyacioglu H, Ferracane JL:

Influence of increment thickness on radiant energy and

microhardness of bulk-fill resin composites.

Dental Materials Journal 2018; 37: 206–213.

https://doi.org/10.4012/dmj.2017-032

Flury S, Hayoz S, Peutzfeldt A, Hüsler J, Lussi A: Depth of

cure of resin composites: Is the ISO 4049 method suitable for

bulk fill materials? Dental Materials 2012; 28: 521–528.

https://doi.org/10.1016/j.dental.2012.02.002

Fráter M, Grosz J, Jakab A, Braunitz er G, Tarj ányi T, Gulyás G,

et al: Evaluation of microhardness of short fiber-reinforced

composites inside the root canal after different light curing methods

– An in vitro study. Journal of the Mechanical Behavior of

Biomedical Materials 2024; 150: 106324.

https://doi.org/10.1016/j.jmbbm.2023.106324

Néma V, Sáry T, Szánt ó FL, Szabó B, Braunitz er G, Lassila L, et al:

Crack propensity of different direct restorative procedures in

deep MOD cavities. Clin Oral Invest 2023; 27: 2003–2011.

https://doi.org/10.1007/s00784-023-04927-1

Alshabib A, Silikas N, Watts DC: Hardness and fracture

toughness of resin-composite materials with and without fibers.

Dental Materials 2019; 35: 1194–1203.

https://doi.org/10.1016/j.dental.2019.05.017

Drummond JL: Degradation, Fatigue, and Failure of Resin Dental

Composite Materials. J Dent Res 2008; 87: 710–719.

https://doi.org/10.1177/154405910808700802

Khairy NM, Elkholany NR, Elembaby AE: Evaluation of surface

microhardness and gingival marginal adaptation of

three different bulk-fill flowable resin composites:

A comparative study. J Esthet Restor Dent 2024; 36: 920–929.

https://doi.org/10.1111/jerd.13211

Cavalcante LM, Schneider LFJ, Silikas N, Watts DC:

Surface integrity of solvent-challenged ormocer-matrix composite.

Dental Materials 2011; 27: 173–179.

https://doi.org/10.1016/j.dental.2010.10.002

Megjelent
2025-12-30
Hogyan kell idézni
JARÁBIKM. L., JAKABA., TARJÁNYIT., JURÁK R., GULYÁSG., SÁMIM., BALIK., BALIK., & DR. FRÁTERM. (2025). Fogászati kompozit tömőanyagok nanoindentációs keménységi vizsgálata. Fogorvosi Szemle, 118(2), 47-52. https://doi.org/10.33891/https://doi.org/10.33891/FSZ.118.2.47-52
Rovat
Eredeti cikk (original article)