Fogászati kompozit tömőanyagok nanoindentációs keménységi vizsgálata
Absztrakt
Bevezetés: A rövid üvegszál megerősítésű kompozitok (SFRC-k) ígéretes alternatívát kínálnak a mély, magas volumenfaktorú
kavitások helyreállítására. Vizsgálatunk célja a folyékony SFRC anyag felszíni keménységének meghatározása
különböző tömési technikák mellett nanoindentáció segítségével.
Anyag és módszer: Négy csoportban (n = 18 / csoport) különböző tömési technikával készült kompozit mintákat vizsgáltunk:
rétegzett hagyományos kompozit, rétegzett SFRC, bulk-fill SFRC és bulk-fill kompozit. A minták keménységét
azok tetején, oldalán és alján mértük nanoindentációval, vízben tárolás előtt és után.
Eredmények: A bulk-fill kompozit csoport szignifikánsan alacsonyabb keménységi értékeket mutatott minden mérési
szinten. Az SFRC minták – rétegzett és bulk technikával egyaránt – magasabb vagy hasonló keménységet produkáltak
a hagyományos kompozithoz képest.
Következtetések: Az SFRC anyag alkalmazása klinikailag releváns alternatívát jelenthet a mély kavitások helyreállításában,
mivel megfelelő keménységet biztosít különböző tömési technikák mellett is.
Hivatkozások
Haak R, Näke T, Park K-J, Ziebolz D, Krause F, Schneider H:
Internal and marginal adaptation of high-viscosity bulk-fill composites
in class II cavities placed with different adhesive strategies.
Odontology 2019; 107: 374–382.
https://doi.org/10.1007/s10266-018-0402-1
Demarco FF, Corrêa MB, Cenci MS, Moraes RR, Opdam NJM:
Longevity of posterior composite restorations:
Not only a matter of materials. Dental Materials 2012; 28: 87–101.
https://doi.org/10.1016/j.dental.2011.09.003
Da Rosa Rodolph o PA, Donassollo TA, Cenci MS , Loguércio AD,
Moraes RR, Bronkhorst EM , et al: 22-Year clinical evaluation of the
performance of two posterior composites with different filler
characteristics. Dental Materials 2011; 27: 955–963.
https://doi.org/10.1016/j.dental.2011.06.001
Taha NA, Palamara JE, Messer HH: Fracture strength and
fracture patterns of root filled teeth restored with
direct resin restorations. Journal of Dentistry 2011; 39: 527–535.
https://doi.org/10.1016/j.jdent.2011.05.003
Sadr A, Bakhtiari B, Hayashi J, Luong MN, Chen Y-W, Chyz G,
et al: Effects of fiber reinforcement on adaptation and bond
strength of a bulk-fill composite in deep preparations.
Dental Materials 2020; 36: 527–534.
https://doi.org/10.1016/j.dental.2020.01.007
Lassila L, Säilynoja E, Prinssi R, Vallittu PK, Garoushi S:
Fracture behavior of Bi-structure fiber-reinforced composite
restorations. Journal of the Mechanical Behavior of
Biomedical Materials 2020; 101: 103444.
https://doi.org/10.1016/j.jmbbm.2019.103444
Lassila L, Säilynoja E, Prinssi R, Vallittu P, Garoushi S:
Characterization of a new fiber-reinforced flowable composite.
Odontology 2019; 107: 342–352.
https://doi.org/10.1007/s10266-018-0405-y
Jakab A, Palkovics D, T. Szabó V, Szabó B, Vincze-Bandi E,
Braunitzer G, et al: Mechanical Performance of Extensive
Restorations Made with Short Fiber-Reinforced Composites
without Coverage: A Systematic Review of In Vitro Studies.
Polymers 2024; 16: 590.
https://doi.org/10.3390/polym16050590
ElAziz RHA, ElAziz SAA, ElAziz PMA, Frater M, Vallittu PK,
Lassila L, et al: Clinical evaluation of posterior flowable short
fiber-reinforced composite restorations without proximal
surface coverage. Odontology 2024; 112: 1274–1283.
https://doi.org/10.1007/s10266-024-00905-5
Lourenço AL, Jager ND, Prochnow C, Milbrandt Dutra
DA, Kleverlaan CJ: Young’s modulus and Poisson ratio of
composite materials: Influence of wet and dry storage. Dent
Mater J 2020; 39: 657–663.
https://doi.org/10.4012/dmj.2019-165
Battancs E, Sáry T, Molnár J, Braunitzer G, Skolnikovics M,
Schindler Á, et al: Fracture Resistance and Microleakage
around Direct Restorations in High C-Factor Cavities.
Polymers (Basel) 2022; 14: 3463.
https://doi.org/10.3390/polym14173463
Harp YS, Montaser MA, Zaghloul NM: Flowable fiber-reinforced
versus flowable bulk-fill resin composites: Degree of conversion
and microtensile bond strength to dentin in high C-factor cavities.
J Esthet Restor Dent 2022; 34: 699–706.
https://doi.org/10.1111/jerd.12901
Magne P, Carvalho MA, Milani T: Shrinkage-induced cuspal
deformation and strength of three different short fiber-reinforced
composite resins. J Esthet Restor Dent 2023; 35: 56–63.
https://doi.org/10.1111/jerd.12998
Néma V, Kunsági-Máté S, Őri Z, Kiss T, Szabó P, Szalma J, et al:
Relation between internal adaptation and degree of conversion of
short-fiber reinforced resin composites applied in bulk or
layered technique in deep MOD cavities.
Dental Materials 2024; 40: 581–592.
https://doi.org/10.1016/j.dental.2024.02.013
Braga R, Boaro L, Kuroe T, Azevedo C, Singer J: Influence of
cavity dimensions and their derivatives (volume and ‘C’ factor)
on shrinkage stress development and microleakage of
composite restorations. Dental Materials 2006; 22: 818–823.
https://doi.org/10.1016/j.dental.2005.11.010
Park J, Chang J, Ferracane J, Lee IB: How should composite be
layered to reduce shrinkage stress: Incremental or bulk filling?
Dental Materials 2008; 24: 1501–1505.
https://doi.org/10.1016/j.dental.2008.03.013
Fronz a BM , Rueggeberg FA, Braga RR, Mogilevych B, Soares LES ,
Martin AA, et al: Monomer conversion, microhardness, internal
marginal adaptation, and shrinkage stress of bulk-fill resin
composites. Dental Materials 2015; 31: 1542–1551.
https://doi.org/10.1016/j.dental.2015.10.001
Bucuta S, Ilie N: Light transmittance and micro-mechanical
properties of bulk fill vs. conventional resin based composites.
Clin Oral Invest 2014; 18: 1991–2000.
https://doi.org/10.1007/s00784-013-1177-y
Al-Zain AO, Baeesa L, Jassoma E, Alghilan MA, Hariri M,
Ismail EH, et al: Assessment of internal porosities for different
placement techniques of bulk-fill resin-based composites:
a micro-computed tomography study.
Clin Oral Invest 2023; 27: 7489–7499.
https://doi.org/10.1007/s00784-023-05337-z
Al-Nahedh H, Alawami Z: Fracture Resistance and Marginal
Adaptation of Capped and Uncapped Bulk-fill Resin-based Materials.
Operative Dentistry 2020; 45: e43–56.
https://doi.org/10.2341/17-367-L
Tsujimoto A, Jurado C, Barkmeier W, Sayed M, Takamizawa T,
Latta M, et al: Effect of Layering Techniques on Polymerization
Shrinkage Stress of High- and Low-viscosity Bulk-fill Resins.
Operative Dentistry 2020; 45: 655–663.
https://doi.org/10.2341/19-217-L
He LH, Swain MV: Nanoindentation derived stress–strain
properties of dental materials.
Dental Materials 2007; 23: 814–821.
https://doi.org/10.1016/j.dental.2006.06.017
Takahashi A, Sato Y, Uno S, Pereira PNR, Sano H: Effects of
mechanical properties of adhesive resins on bond strength to dentin.
Dental Materials 2002; 18: 263–268.
https://doi.org/10.1016/S0109-5641(01)00046-X
Van Meerbeek B, Willems G, Celis JP, Roos JR, Braem M,
Lambrechts P, et al: Assessment by Nano-indentation of the
Hardness and Elasticity of the Resin-Dentin Bonding Area.
J Dent Res 1993; 72: 1434–1442.
https://doi.org/10.1177/00220345930720101401
Sadr A, Shimada Y, Lu H, Tagami J: The viscoelastic behavior of
dental adhesives: A nanoindentation study.
Dental Materials 2009; 25: 13–19.
https://doi.org/10.1016/j.dental.2008.05.001
Attik N, Colon P, Gauthier R, Chevalier C, Grosgogeat B,
Abouelleil H: Comparison of physical and biological properties of
a flowable fiber reinforced and bulk filling composites.
Dental Materials 2022; 38: e19–30.
https://doi.org/10.1016/j.dental.2021.12.029
Karacolak G, Turkun LS, Boyacioglu H, Ferracane JL:
Influence of increment thickness on radiant energy and
microhardness of bulk-fill resin composites.
Dental Materials Journal 2018; 37: 206–213.
https://doi.org/10.4012/dmj.2017-032
Flury S, Hayoz S, Peutzfeldt A, Hüsler J, Lussi A: Depth of
cure of resin composites: Is the ISO 4049 method suitable for
bulk fill materials? Dental Materials 2012; 28: 521–528.
https://doi.org/10.1016/j.dental.2012.02.002
Fráter M, Grosz J, Jakab A, Braunitz er G, Tarj ányi T, Gulyás G,
et al: Evaluation of microhardness of short fiber-reinforced
composites inside the root canal after different light curing methods
– An in vitro study. Journal of the Mechanical Behavior of
Biomedical Materials 2024; 150: 106324.
https://doi.org/10.1016/j.jmbbm.2023.106324
Néma V, Sáry T, Szánt ó FL, Szabó B, Braunitz er G, Lassila L, et al:
Crack propensity of different direct restorative procedures in
deep MOD cavities. Clin Oral Invest 2023; 27: 2003–2011.
https://doi.org/10.1007/s00784-023-04927-1
Alshabib A, Silikas N, Watts DC: Hardness and fracture
toughness of resin-composite materials with and without fibers.
Dental Materials 2019; 35: 1194–1203.
https://doi.org/10.1016/j.dental.2019.05.017
Drummond JL: Degradation, Fatigue, and Failure of Resin Dental
Composite Materials. J Dent Res 2008; 87: 710–719.
https://doi.org/10.1177/154405910808700802
Khairy NM, Elkholany NR, Elembaby AE: Evaluation of surface
microhardness and gingival marginal adaptation of
three different bulk-fill flowable resin composites:
A comparative study. J Esthet Restor Dent 2024; 36: 920–929.
https://doi.org/10.1111/jerd.13211
Cavalcante LM, Schneider LFJ, Silikas N, Watts DC:
Surface integrity of solvent-challenged ormocer-matrix composite.
Dental Materials 2011; 27: 173–179.
Copyright (c) 2025 Szerzők

This work is licensed under a Creative Commons Attribution 4.0 International License.
.png)




1.png)