Polymerization shrinkage-stress of short fiber-reinforced composite

Pilot study

Keywords: Polymerization shrinkage, cracks, short fiber-reinforced composite, filling-technique, post-polymerization

Abstract

Background: Polymerization shrinkage-related stress of dental composite materials is a clinically relevant problem. In
the presence of proper adhesion, shrinkage produces stress in the remaining tooth structure. The greater the destruction,
the less the tooth structure is available to withstand the stress; thus, causing cracks in the enamel. The purpose of
this in vitro study was to investigate the number of cracks caused by polymerization shrinkage using two different filling
techniques utilising short fibre-reinforced composite (SFRC).
Materials and methods: 40 extracted wisdom teeth, prepared with standardized MOD cavity (5 mm deep and 2,5 mm
wall thickness) were used. After adhesive treatment, teeth were divided into two groups, each restored with SFRC as
follows: Group 1: Bulk-fill technique; Group 2 oblique layering technique (with 2 mm increments). In all specimens, the
SFRC was covered
with 1 mm packable composite resin. After completion of the restoration, the enamel was examined
using a D-Light Pro lamp, and the cracks were documented. In addition, the number of the cracks was further documented
after 1 week period.
Results: There was no significant difference between the groups in respect of the cracks’ number. After 1 week, the
average number in group 1 was 4.95 showing 340% increase, and in Group 2: 4.30 showing the same 340% increase,
which significantly differs to the previously obtained values (p = 0.000). There is no significant difference between the
techniques regarding total sum of cracks after 1 week.
Conclusions: In both techniques, almost an equal number of cracks is developing. During the post-polymerization
period, the number of cracks grows significantly irrespective of the chosen technique.

References

BATALHA-SILVA S, DE ANDRADA MAC, MAIA HP, MAGNE P: Fatigue resistance and crack propensity of large MOD composite resin restorations: Direct versus CAD/CAM inlays. Dent Mater. 2013. 0 1.;29(3):324-31. https://doi.org/10.1016/j.dental.2012.11.013

BICALHO AA, DE SOUZA SJB, DE ROSATTO CMP, TANTBIROJN D, VERSLUIS A, SOARES CJ: Effect of temperature and humidity on post-gel shrinkage, cusp deformation, bond strength and shrinkage stress - Construction of a chamber to simulate the oral environment. Dent Mater. 2015. 0 1.;31(12):1523-32. https://doi.org/10.1016/j.dental.2015.09.023

BICALHO AA, VALDÍVIA ADCM, BARRETO BCF, TANTBIROJN D, VERSLUIS A, SOARES CJ: Incremental filling technique and composite material--part II: shrinkage and shrinkage stresses. Oper Dent. 2014. április;39(2):E83-92. https://doi.org/10.2341/12-442-L

BOCALON ACE, MITA D, NARUMYIA I, SHOUHA P, XAVIER TA, BRAGA RR: Replacement of glass particles by multidirectional short glass fibers in experimental composites: Effects on degree of conversion, mechanical properties and polymerization shrinkage. Dent Mater Off Publ Acad Dent Mater. 2016. szeptember;32(9):e204-210. https://doi.org/10.1016/j.dental.2016.06.008

FORSTER A, BRAUNITZER G, TÓTH M, SZABÓ BP, FRÁTER M: In Vitro Fracture Resistance of Adhesively Restored Molar Teeth with Different MOD Cavity Dimensions. J Prosthodont. 2019;28(1):e325-31. https://doi.org/10.1111/jopr.12777

FRÁTER M, FORSTER A, KERESZTÚRI M, BRAUNITZER G, NAGY K: In vitro fracture resistance of molar teeth restored with a short fibre-reinforced composite material. J Dent. 2014. szeptember;42(9):1143-50. https://doi.org/10.1016/j.jdent.2014.05.004

FRÁTER M, SÁRY T, VINCZE-BANDI E, VOLOM A, BRAUNITZER G, SZABÓ P. B, ÉS MTSAI: Fracture Behavior of Short Fiber-Reinforced Direct Restorations in Large MOD Cavities. Polymers. 2021. január;13(13):2040. https://doi.org/10.3390/polym13132040

GAROUSHI S, GARGOUM A, VALLITTU PK, LASSILA L: Short fiber-reinforced composite restorations: A review of the current literature. J Investig Clin Dent. 2018. 0;9(3):e12330. https://doi.org/10.1111/jicd.12330

GAROUSHI S, SÄILYNOJA E, VALLITTU PK, LASSILA L. Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater Off Publ Acad Dent Mater. 2013. 0;29(8):835-41. https://doi.org/10.1016/j.dental.2013.04.016

GAROUSHI S, VALLITTU PK, WATTS DC, LASSILA LVJ: Polymerization shrinkage of experimental short glass fiber-reinforced composite with semi-inter penetrating polymer network matrix. Dent Mater Off Publ Acad Dent Mater. 2008. február;24(2):211-5. https://doi.org/10.1016/j.dental.2007.04.001

KAISARLY D, LANGENEGGER R, LITZENBURGER F, HECK K, EL GEZAWI M, RÖSCH P, ÉS MTSAI: Effects of application method on shrinkage vectors and volumetric shrinkage of bulk-fill composites in class-II restorations. Dent Mater Off Publ Acad Dent Mater. 2022;38(1):79-93. https://doi.org/10.1016/j.dental.2021.10.013

KUIJS RH, FENNIS WMM, KREULEN CM, BARINK M, VERDONSCHOT N: Does layering minimize shrinkage stresses in composite restorations? J Dent Res. 2003;82(12):967-71. https://doi.org/10.1177/154405910308201206

MAGNE P, MAHALLATI R, BAZOS P, SO W-S: Direct Dentin Bonding Technique Sensitivity When Using Air/Suction Drying Steps. J Esthet Restor Dent. 2008;20(2):130-8. https://doi.org/10.1111/j.1708-8240.2008.00164.x

MAGNE P, SILVA S, ANDRADA M DE, MAIA H: Fatigue resistance and crack propensity of novel "super-closed" sandwich composite resin restorations in large MOD defects. Int J Esthet Dent. 2016;11(1):82-97.

MILOSEVIC M: Polymerization Mechanics of Dental Composites - Advantages and Disadvantages. Procedia Eng. 2016. 0 1.;149:313-20. https://doi.org/10.1016/j.proeng.2016.06.672

OHMORI K, TASAKI T, KIMURA S, HORI A, SAKAEDA N, HANABUSA M, ET AL: Residual polymerization stresses in human premolars generated with Class II composite restorations. J Mech Behav Biomed Mater. 2020. prilis;104:103643. https://doi.org/10.1016/j.jmbbm.2020.103643

POTTIER JG, GREGG A, AREGAWI W, NASIRI E, FOK A, LIU Y, ET AL: A standardized method to determine the effect of polymerization shrinkage on the cusp deflection and shrinkage induced built-in stress of class II tooth models. J Mech Behav Biomed Mater. 2020. 0 1.;111:103987. https://doi.org/10.1016/j.jmbbm.2020.103987

SÁRY T, GAROUSHI S, BRAUNITZER G, ALLEMAN D, VOLOM A, FRÁTER M: Fracture behaviour of MOD restorations reinforced by various fibre-reinforced techniques - An in vitro study. J Mech Behav Biomed Mater. 2019. október;98:348-56. https://doi.org/10.1016/j.jmbbm.2019.07.006

SCHNEIDER LFJ, CONSANI S, OGLIARI F, CORRER AB, SOBRINHO LC, SINHORETI MAC: Effect of Time and Polymerization Cycle on the Degree of Conversion of a Resin Composite. Oper Dent. 2006. 0 1.;31(4):489-95. https://doi.org/10.2341/05-81

SOARES CJ, FARIA-E-SILVA AL, RODRIGUES M DE P, VILELA ABF, PFEIFER CS, TANTBIROJN D, ET AL: Polymerization shrinkage stress of composite resins and resin cements - What do we need to know? Braz Oral Res. 2017;31(suppl 1):e62. https://doi.org/10.1590/1807-3107bor-2017.vol31.0062

SOARES LM, RAZAGHY M, MAGNE P: Optimization of large MOD restorations: Composite resin inlays vs. short fiber-reinforced direct restorations. Dent Mater Off Publ Acad Dent Mater. 2018. április;34(4):587-97. https://doi.org/10.1016/j.dental.2018.01.004

TSUJIMOTO A, BARKMEIER WW, TAKAMIZAWA T, LATTA MA, MIYAZAKI M: Mechanical properties, volumetric shrinkage and depth of cure of short fiber-reinforced resin composite. Dent Mater J. 2016;35(3):418-24. https://doi.org/10.4012/dmj.2015-280

VERSLUIS A, DOUGLAS WH, CROSS M, SAKAGUCHI RL: Does an incremental filling technique reduce polymerization shrinkage stresses? J Dent Res. 1996. március;75(3):871-8. https://doi.org/10.1177/00220345960750030301

Published
2022-12-19
How to Cite
NémaV., SáryT., SzántóL. F., BraunitzerG., & FráterM. (2022). Polymerization shrinkage-stress of short fiber-reinforced composite: Pilot study. Hungarian Journal of Dentistry, 115(4), 178-182. https://doi.org/10.33891/FSZ.114.4.178-182
Section
Original article